Answer
Verified
469.2k+ views
Hint: First of all we know neutron energy is also called neutron detection temperature. It indicates a free neutron kinetic energy, usually given in electron volts. Neutron energy is distributed in different ranges; one of them is the thermal neutron. A thermal neutron is a free neutron with a kinetic energy of about 0.025eV.
Complete step by step solution:
The kinetic energy of thermal neutrons is calculated by the formula ($E = {k_B}T$), where ${k_B}$ the Boltzmann’s constant and T is the temperature in the Kelvin.
At $T = 20^\circ C = (293K)$
$E = {K_B}T = 8 \times 10^{ - 5}{eV/K} \times 293K$
$=0.03eV$
Additional information:
When we say a thermal neutron has energy ${k_B}T$, it means that there is a distribution of neutron energies owing to the temperature. This distribution is a Maxwell distribution and the most probable energy for a neutron in this distribution is ${k_B}T$. We choose this energy ${k_B}T$ as representative of a thermal neutron.
Note:
The atoms in a reactor will exhibit the same energy distribution as the neutrons because they will be at the same temperature. Thus, the most probable energy for the atoms in a reactor will be the same as that for the neutrons, 0.0253$eV$. Thermal neutrons have a different and sometimes much larger effective neutron absorption for a given nuclide than fast neutrons, and can therefore often be absorbed more easily by the atomic nucleus. This event is called neutron activation.
Complete step by step solution:
The kinetic energy of thermal neutrons is calculated by the formula ($E = {k_B}T$), where ${k_B}$ the Boltzmann’s constant and T is the temperature in the Kelvin.
At $T = 20^\circ C = (293K)$
$E = {K_B}T = 8 \times 10^{ - 5}{eV/K} \times 293K$
$=0.03eV$
Additional information:
When we say a thermal neutron has energy ${k_B}T$, it means that there is a distribution of neutron energies owing to the temperature. This distribution is a Maxwell distribution and the most probable energy for a neutron in this distribution is ${k_B}T$. We choose this energy ${k_B}T$ as representative of a thermal neutron.
Note:
The atoms in a reactor will exhibit the same energy distribution as the neutrons because they will be at the same temperature. Thus, the most probable energy for the atoms in a reactor will be the same as that for the neutrons, 0.0253$eV$. Thermal neutrons have a different and sometimes much larger effective neutron absorption for a given nuclide than fast neutrons, and can therefore often be absorbed more easily by the atomic nucleus. This event is called neutron activation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE