Answer
Verified
459k+ views
Hint: Neurons are excitable cells because their membranes are in a polarized state. Different types of ion channels are present on the nerve membrane.
These ion channels are selectively permeable to different ions.
When a neuron is not conducting any impulse, i.e., resting, the axonal membrane is comparatively more permeable to potassium ions ($K^+$) and nearly impermeable to sodium ions ($Na^+$).
Similarly, the membrane is impermeable to negatively charged proteins present in the axoplasm.
Consequently, the axoplasm inside the axon contains a high concentration of K+ and negatively charged proteins and a low concentration of $Na^+$.
Complete answer: The fluid outside the axon contains a low concentration of $K^+$, a high concentration of $Na^+$, and thus forms a concentration gradient.
These Neurons are excitable cells because their membranes are in a polarized state.
Different types of ion channels are present on the nerve membrane.
These ion channels are selectively permeable to different ions.
Additional information: When a neuron is not conducting any impulse, i.e., resting, the axonal membrane is comparatively more permeable to potassium ions (K+) and nearly impermeable to sodium ions (Na+).
1. Similarly, the membrane is impermeable to negatively charged proteins present in the axoplasm.
2. Consequently, the axoplasm inside the axon contains a high concentration of K+ and negatively charged proteins and a low concentration of $Na^+$.
3. These ionic gradients across the resting membrane are maintained by the active transport of ions by the sodium-potassium pump which transports 3 Na+ outwards for 2 K+ into the cell.
4. As a result, the outer surface of the axonal membrane possesses a positive charge while its inner surface becomes negatively charged and therefore is polarised.
So the correct answer is D. Impermeable
Note: The electrical potential difference across the resting plasma membrane is called the resting potential.
At a chemical synapse, the membranes of the pre- and postsynaptic neurons are separated by a fluid-filled space called the synaptic cleft.
The rise in the stimulus-induced permeability to Na+ is extremely short lived.
It is quickly followed by a rise in permeability to K+.
Within a fraction of a second, K+ diffuses outside the membrane and restores the resting potential of the membrane at the site of excitation and the fiber becomes once more responsive to further stimulation.
These ion channels are selectively permeable to different ions.
When a neuron is not conducting any impulse, i.e., resting, the axonal membrane is comparatively more permeable to potassium ions ($K^+$) and nearly impermeable to sodium ions ($Na^+$).
Similarly, the membrane is impermeable to negatively charged proteins present in the axoplasm.
Consequently, the axoplasm inside the axon contains a high concentration of K+ and negatively charged proteins and a low concentration of $Na^+$.
Complete answer: The fluid outside the axon contains a low concentration of $K^+$, a high concentration of $Na^+$, and thus forms a concentration gradient.
These Neurons are excitable cells because their membranes are in a polarized state.
Different types of ion channels are present on the nerve membrane.
These ion channels are selectively permeable to different ions.
Additional information: When a neuron is not conducting any impulse, i.e., resting, the axonal membrane is comparatively more permeable to potassium ions (K+) and nearly impermeable to sodium ions (Na+).
1. Similarly, the membrane is impermeable to negatively charged proteins present in the axoplasm.
2. Consequently, the axoplasm inside the axon contains a high concentration of K+ and negatively charged proteins and a low concentration of $Na^+$.
3. These ionic gradients across the resting membrane are maintained by the active transport of ions by the sodium-potassium pump which transports 3 Na+ outwards for 2 K+ into the cell.
4. As a result, the outer surface of the axonal membrane possesses a positive charge while its inner surface becomes negatively charged and therefore is polarised.
So the correct answer is D. Impermeable
Note: The electrical potential difference across the resting plasma membrane is called the resting potential.
At a chemical synapse, the membranes of the pre- and postsynaptic neurons are separated by a fluid-filled space called the synaptic cleft.
The rise in the stimulus-induced permeability to Na+ is extremely short lived.
It is quickly followed by a rise in permeability to K+.
Within a fraction of a second, K+ diffuses outside the membrane and restores the resting potential of the membrane at the site of excitation and the fiber becomes once more responsive to further stimulation.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE