
The capacitor $C$ is charged to $5\,mC$ when the switch $S$ in the circuit given below is kept open. If at $t = 0\sec $ switch $S$ is closed, the variation of potential drop ${V_R}$ across the resistance $20\Omega $ with time is represented by:
Answer
518.4k+ views
Hint: In the given circuit, the capacitor will get charged with time and firstly we will find the charge on the capacitor at a particular time and then we will find the charging and discharging current which is time derivative of charge variable.
Complete step by step answer:
Let us convert the initial charge of capacitor into coulomb.$5mc = 5 \times {10^{ - 3}}C$ And let $q(t)$ be the charge varies with time and value of $\dfrac{1}{{RC}} = 2000\sec $
$q(t) = \dfrac{1}{{200}}{e^{ - 2000t}}$
Now we also know that,
Discharging current can be written as $i(t) = \dfrac{{dq(t)}}{{dt}}$
$i(t) = - 10{e^{ - 2000t}} \to (i)$
Since, for charging the capacitor, the current with time is written as
$\dfrac{{dq}}{{q - VC}} = - \dfrac{1}{{RC}}dt$
$\Rightarrow \ln (q - VC) = - \dfrac{1}{{RC}}t + \ln K$
Since at time equals to zero this charge $q = 0$ hence,
$q(t) = 1.25 \times {10^{ - 3}}(1 - {e^{ - 2000t}})$
differentiating above equation with respect to time, we will get the current as:
$i(t) = 6.25 \times {10^{ - 3}} \times 2 \times {e^{ - 2000t}}$
$\Rightarrow i(t) = 12.50\,{e^{ - 2000t}}A$
$\therefore {V_R}(t) = 250\,{e^{ - 2000t}}V$
Now, we have the value of voltage and the current. Now, we can draw a graph between voltage versus time keeping voltage in Y-direction and time on X-direction. So the graph can be represented as:
Hence, above is the variation between voltages across the resistor with time.
Note:It should be remembered that, the negative of Euler constant with a negative exponent is a decreasing graph with dependent variable while Euler constant having a positive exponent has an increasing graph with dependent variable and hence, in this case Euler constant has a negative slope.
Complete step by step answer:
Let us convert the initial charge of capacitor into coulomb.$5mc = 5 \times {10^{ - 3}}C$ And let $q(t)$ be the charge varies with time and value of $\dfrac{1}{{RC}} = 2000\sec $
$q(t) = \dfrac{1}{{200}}{e^{ - 2000t}}$
Now we also know that,
Discharging current can be written as $i(t) = \dfrac{{dq(t)}}{{dt}}$
$i(t) = - 10{e^{ - 2000t}} \to (i)$
Since, for charging the capacitor, the current with time is written as
$\dfrac{{dq}}{{q - VC}} = - \dfrac{1}{{RC}}dt$
$\Rightarrow \ln (q - VC) = - \dfrac{1}{{RC}}t + \ln K$
Since at time equals to zero this charge $q = 0$ hence,
$q(t) = 1.25 \times {10^{ - 3}}(1 - {e^{ - 2000t}})$
differentiating above equation with respect to time, we will get the current as:
$i(t) = 6.25 \times {10^{ - 3}} \times 2 \times {e^{ - 2000t}}$
$\Rightarrow i(t) = 12.50\,{e^{ - 2000t}}A$
$\therefore {V_R}(t) = 250\,{e^{ - 2000t}}V$
Now, we have the value of voltage and the current. Now, we can draw a graph between voltage versus time keeping voltage in Y-direction and time on X-direction. So the graph can be represented as:
Hence, above is the variation between voltages across the resistor with time.
Note:It should be remembered that, the negative of Euler constant with a negative exponent is a decreasing graph with dependent variable while Euler constant having a positive exponent has an increasing graph with dependent variable and hence, in this case Euler constant has a negative slope.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

