Answer
Verified
489.6k+ views
Hint: Centroid is the intersection point of medians. Orthocentre is the intersection point of altitudes. Circumcentre is the intersection point of perpendicular bisectors of sides of a triangle.
In the case of an equilateral triangle, median, altitude, and perpendicular bisector are the same. Hence, centroid, circumcentre, and orthocentre coincide.
In the case of an equilateral triangle, we know that centroid, orthocentre, and circumcentre coincide.
We also know that the circumcentre is equidistant from the vertices.
So , in the case of an equilateral triangle, the centroid is equidistant from the vertices.
Now, the given centroid is $G\left( 1,1 \right)$and one vertex is $A\left( 1,2 \right)$.
We, know the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given as;
$\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$
So, $AG=\sqrt{{{\left( 1-1 \right)}^{2}}+{{\left( 2-1 \right)}^{2}}}=1$
So, $A{{G}^{2}}=1$
Now, since $G$ is the centroid as well as the circumcentre, the other two vertices should lie on a circle with $G\left( 1,1 \right)$as the centre and $AG=1$ as the radius.
Now, we know that the equation of a circle with center at $\left( a,b \right)$ and radius$=r$ is given as
${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}$
So, the equation of circumcircle becomes
${{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=1..........\left( i \right)$
So, the other two vertices should lie on this circle .
Now , we will check the options .
Option (a) :$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$
We will substitute $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ in equation $\left( i \right)$.
On substituting $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get;
$\begin{align}
& {{\left( \dfrac{2-\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{4}{4}=1 \\
& \Rightarrow 1=1 \\
& LHS=RHS \\
\end{align}$
So ,$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ satisfies the equation and hence , can be one of the vertices .
Option (b): $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$.
On substituting $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$ we get,
$\begin{align}
& {{\left( \dfrac{2+3\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{3\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{27}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{28}{4}=1 \\
& \Rightarrow 7=1 \\
\end{align}$
Which is false i.e. $LHS\ne RHS$
So , $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$ does not satisfy the equation and hence cannot be the vertex of the triangle.
Option (c): $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation$\left( i \right)$.
On substituting $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get
\[\begin{align}
& {{\left( \dfrac{2+\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow 1=1 \\
\end{align}\]
Which is true i.e. $LHS=RHS$
Hence , $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$can be a vertex of the triangle.
Therefore, $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ or $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ can be a vertex of the triangle.
Option (a) $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$(c) $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ are correct.
Note: The distance between two points \[({{x}_{1}},{{y}_{1}})\]and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and not \[d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}\]. It is a very common mistake made by students.
In the case of an equilateral triangle, median, altitude, and perpendicular bisector are the same. Hence, centroid, circumcentre, and orthocentre coincide.
In the case of an equilateral triangle, we know that centroid, orthocentre, and circumcentre coincide.
We also know that the circumcentre is equidistant from the vertices.
So , in the case of an equilateral triangle, the centroid is equidistant from the vertices.
Now, the given centroid is $G\left( 1,1 \right)$and one vertex is $A\left( 1,2 \right)$.
We, know the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given as;
$\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$
So, $AG=\sqrt{{{\left( 1-1 \right)}^{2}}+{{\left( 2-1 \right)}^{2}}}=1$
So, $A{{G}^{2}}=1$
Now, since $G$ is the centroid as well as the circumcentre, the other two vertices should lie on a circle with $G\left( 1,1 \right)$as the centre and $AG=1$ as the radius.
Now, we know that the equation of a circle with center at $\left( a,b \right)$ and radius$=r$ is given as
${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}$
So, the equation of circumcircle becomes
${{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=1..........\left( i \right)$
So, the other two vertices should lie on this circle .
Now , we will check the options .
Option (a) :$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$
We will substitute $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ in equation $\left( i \right)$.
On substituting $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get;
$\begin{align}
& {{\left( \dfrac{2-\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{4}{4}=1 \\
& \Rightarrow 1=1 \\
& LHS=RHS \\
\end{align}$
So ,$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ satisfies the equation and hence , can be one of the vertices .
Option (b): $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$.
On substituting $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$ we get,
$\begin{align}
& {{\left( \dfrac{2+3\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{3\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{27}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{28}{4}=1 \\
& \Rightarrow 7=1 \\
\end{align}$
Which is false i.e. $LHS\ne RHS$
So , $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$ does not satisfy the equation and hence cannot be the vertex of the triangle.
Option (c): $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation$\left( i \right)$.
On substituting $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get
\[\begin{align}
& {{\left( \dfrac{2+\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow 1=1 \\
\end{align}\]
Which is true i.e. $LHS=RHS$
Hence , $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$can be a vertex of the triangle.
Therefore, $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ or $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ can be a vertex of the triangle.
Option (a) $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$(c) $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ are correct.
Note: The distance between two points \[({{x}_{1}},{{y}_{1}})\]and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and not \[d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}\]. It is a very common mistake made by students.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE