![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The centroid and a vertex of an equilateral triangle are $\left( 1,1 \right)$and $\left( 1,2 \right)$ respectively. Another vertex of the triangle can be
A) $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$
B) $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$
C) $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$
D) None of these
Answer
513.6k+ views
Hint: Centroid is the intersection point of medians. Orthocentre is the intersection point of altitudes. Circumcentre is the intersection point of perpendicular bisectors of sides of a triangle.
In the case of an equilateral triangle, median, altitude, and perpendicular bisector are the same. Hence, centroid, circumcentre, and orthocentre coincide.
In the case of an equilateral triangle, we know that centroid, orthocentre, and circumcentre coincide.
We also know that the circumcentre is equidistant from the vertices.
So , in the case of an equilateral triangle, the centroid is equidistant from the vertices.
Now, the given centroid is $G\left( 1,1 \right)$and one vertex is $A\left( 1,2 \right)$.
We, know the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given as;
$\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$
So, $AG=\sqrt{{{\left( 1-1 \right)}^{2}}+{{\left( 2-1 \right)}^{2}}}=1$
So, $A{{G}^{2}}=1$
Now, since $G$ is the centroid as well as the circumcentre, the other two vertices should lie on a circle with $G\left( 1,1 \right)$as the centre and $AG=1$ as the radius.
Now, we know that the equation of a circle with center at $\left( a,b \right)$ and radius$=r$ is given as
${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}$
So, the equation of circumcircle becomes
${{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=1..........\left( i \right)$
So, the other two vertices should lie on this circle .
Now , we will check the options .
Option (a) :$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$
We will substitute $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ in equation $\left( i \right)$.
On substituting $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get;
$\begin{align}
& {{\left( \dfrac{2-\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{4}{4}=1 \\
& \Rightarrow 1=1 \\
& LHS=RHS \\
\end{align}$
So ,$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ satisfies the equation and hence , can be one of the vertices .
Option (b): $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$.
On substituting $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$ we get,
$\begin{align}
& {{\left( \dfrac{2+3\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{3\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{27}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{28}{4}=1 \\
& \Rightarrow 7=1 \\
\end{align}$
Which is false i.e. $LHS\ne RHS$
So , $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$ does not satisfy the equation and hence cannot be the vertex of the triangle.
Option (c): $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation$\left( i \right)$.
On substituting $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get
\[\begin{align}
& {{\left( \dfrac{2+\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow 1=1 \\
\end{align}\]
Which is true i.e. $LHS=RHS$
Hence , $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$can be a vertex of the triangle.
Therefore, $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ or $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ can be a vertex of the triangle.
Option (a) $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$(c) $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ are correct.
Note: The distance between two points \[({{x}_{1}},{{y}_{1}})\]and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and not \[d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}\]. It is a very common mistake made by students.
In the case of an equilateral triangle, median, altitude, and perpendicular bisector are the same. Hence, centroid, circumcentre, and orthocentre coincide.
In the case of an equilateral triangle, we know that centroid, orthocentre, and circumcentre coincide.
We also know that the circumcentre is equidistant from the vertices.
So , in the case of an equilateral triangle, the centroid is equidistant from the vertices.
Now, the given centroid is $G\left( 1,1 \right)$and one vertex is $A\left( 1,2 \right)$.
![seo images](https://www.vedantu.com/question-sets/8ca5d738-e419-4ed0-92d1-052b1b421c5e5700330245849906753.png)
We, know the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given as;
$\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$
So, $AG=\sqrt{{{\left( 1-1 \right)}^{2}}+{{\left( 2-1 \right)}^{2}}}=1$
So, $A{{G}^{2}}=1$
Now, since $G$ is the centroid as well as the circumcentre, the other two vertices should lie on a circle with $G\left( 1,1 \right)$as the centre and $AG=1$ as the radius.
Now, we know that the equation of a circle with center at $\left( a,b \right)$ and radius$=r$ is given as
${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}$
So, the equation of circumcircle becomes
${{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=1..........\left( i \right)$
So, the other two vertices should lie on this circle .
Now , we will check the options .
Option (a) :$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$
We will substitute $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ in equation $\left( i \right)$.
On substituting $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get;
$\begin{align}
& {{\left( \dfrac{2-\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{4}{4}=1 \\
& \Rightarrow 1=1 \\
& LHS=RHS \\
\end{align}$
So ,$\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ satisfies the equation and hence , can be one of the vertices .
Option (b): $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$.
On substituting $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$ we get,
$\begin{align}
& {{\left( \dfrac{2+3\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{3\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{27}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow \dfrac{28}{4}=1 \\
& \Rightarrow 7=1 \\
\end{align}$
Which is false i.e. $LHS\ne RHS$
So , $\left( \dfrac{2+3\sqrt{3}}{2},\dfrac{1}{2} \right)$ does not satisfy the equation and hence cannot be the vertex of the triangle.
Option (c): $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$
Now , we will substitute $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation$\left( i \right)$.
On substituting $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$in equation $\left( i \right)$, we get
\[\begin{align}
& {{\left( \dfrac{2+\sqrt{3}}{2}-1 \right)}^{2}}+{{\left( \dfrac{1}{2}-1 \right)}^{2}}=1 \\
& \Rightarrow {{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{-1}{2} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4}=1 \\
& \Rightarrow 1=1 \\
\end{align}\]
Which is true i.e. $LHS=RHS$
Hence , $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$can be a vertex of the triangle.
Therefore, $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ or $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$ can be a vertex of the triangle.
Option (a) $\left( \dfrac{2-\sqrt{3}}{2},\dfrac{1}{2} \right)$(c) $\left( \dfrac{2+\sqrt{3}}{2},\dfrac{1}{2} \right)$ are correct.
Note: The distance between two points \[({{x}_{1}},{{y}_{1}})\]and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and not \[d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}\]. It is a very common mistake made by students.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)