Answer
Verified
498.6k+ views
Hint: We know the circumference of a circle is \[2\pi r\]. Find the radius of the circle from the circumference. After finding radius, find the area of a circle using the formula of area.
Complete step-by-step answer:
We know that circumference of a circle is equal to \[2\pi r\], where r is the radius of the circle.
\[\therefore \]Circumference of circle = \[2\pi r\].
We are given the value of circumference of the circle = 31.4cm.
We need to find the radius ‘r’ of the circle.
\[\begin{align}
& \Rightarrow 2\pi r=31.4 \\
& r=\dfrac{31.4}{2\pi }=\dfrac{31.4}{2\times 3.14}=\dfrac{3.14\times 10}{2\times 3.14} \\
& =\dfrac{10}{2}=5cm \\
\end{align}\]
Hence, we got the radius of the circle as 5cm.
Now let us find the area of the circle.
We know the area of a circle is given by \[\pi {{r}^{2}}\].
Area\[=\pi {{r}^{2}}=\pi \times {{5}^{2}}=\pi \times 5\times 5\]
\[=3.14\times 25=78.5c{{m}^{2}}\]
Hence, we got the radius of the circle as 5cm and the area of the circle as \[78.5c{{m}^{2}}\]respectively.
Note: To find the diameter of the circle you can take twice the radius of the circle i.e. diameter \[=2\times \]radius. We can find the area of the circle by directly substituting the value of diameter instead of radius.
radius\[=\dfrac{diameter}{2}\Rightarrow r=\dfrac{d}{2}\], area\[=\pi {{r}^{2}}=\pi \times {{\left( \dfrac{d}{2} \right)}^{2}}\]
area\[=\dfrac{\pi {{d}^{2}}}{4}\]
\[\therefore \] area of circle can be also said as \[\dfrac{\pi {{d}^{2}}}{4}\].
Complete step-by-step answer:
We know that circumference of a circle is equal to \[2\pi r\], where r is the radius of the circle.
\[\therefore \]Circumference of circle = \[2\pi r\].
We are given the value of circumference of the circle = 31.4cm.
We need to find the radius ‘r’ of the circle.
\[\begin{align}
& \Rightarrow 2\pi r=31.4 \\
& r=\dfrac{31.4}{2\pi }=\dfrac{31.4}{2\times 3.14}=\dfrac{3.14\times 10}{2\times 3.14} \\
& =\dfrac{10}{2}=5cm \\
\end{align}\]
Hence, we got the radius of the circle as 5cm.
Now let us find the area of the circle.
We know the area of a circle is given by \[\pi {{r}^{2}}\].
Area\[=\pi {{r}^{2}}=\pi \times {{5}^{2}}=\pi \times 5\times 5\]
\[=3.14\times 25=78.5c{{m}^{2}}\]
Hence, we got the radius of the circle as 5cm and the area of the circle as \[78.5c{{m}^{2}}\]respectively.
Note: To find the diameter of the circle you can take twice the radius of the circle i.e. diameter \[=2\times \]radius. We can find the area of the circle by directly substituting the value of diameter instead of radius.
radius\[=\dfrac{diameter}{2}\Rightarrow r=\dfrac{d}{2}\], area\[=\pi {{r}^{2}}=\pi \times {{\left( \dfrac{d}{2} \right)}^{2}}\]
area\[=\dfrac{\pi {{d}^{2}}}{4}\]
\[\therefore \] area of circle can be also said as \[\dfrac{\pi {{d}^{2}}}{4}\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE