Answer
Verified
460.5k+ views
Hint: Assume the cost of one bat be x rupees and the cost of one ball be y rupees. Then we will formulate the given conditions into equations involving x and y and then solve the equations by elimination method and determining the value of x and y.
Complete step-by-step answer:
Let the cost of one bat be x rupees and the cost of one ball be y rupees.
In Algebraic form:
Then the equation for one bat and 2 balls costing Rs.300 will be represented as:
$x + 2y = 300{\text{ }}...{\text{(1)}}$
$ \Rightarrow x = 300 - 2y{\text{ }}...{\text{(2)}}$
And the other equation for 2 bats and 3 balls of the same kind costing Rs.525 can be represented as:
$2x + 3y = 525{\text{ }}...{\text{(3)}}$
In graphical method: In this, we will substitute 2 to 3 values of y and get the table following for:
$x+2y = 300$
$2x + 3y = 525$
Now, putting the value of equation (2) in equation (3), we will get:
$
2(300 - 2y) + 3y = 525 \\
\Rightarrow y = 75 \\
$
And substituting the value of $y = 75$ in (2), we will get $x = 150$.
So, the coach will pay Rs.150 for a bat and Rs.75 for a ball.
Note: Whenever there are 2 equations in 2 variables, the easiest method to solve them is by the elimination method.
Put the value of one variable from one equation into the second equation to get the value of the second variable.
In the graph, the point at which both the lines are intersecting will give the values for x and y.
It can also be verified by solving the equations algebraically.
Complete step-by-step answer:
Let the cost of one bat be x rupees and the cost of one ball be y rupees.
In Algebraic form:
Then the equation for one bat and 2 balls costing Rs.300 will be represented as:
$x + 2y = 300{\text{ }}...{\text{(1)}}$
$ \Rightarrow x = 300 - 2y{\text{ }}...{\text{(2)}}$
And the other equation for 2 bats and 3 balls of the same kind costing Rs.525 can be represented as:
$2x + 3y = 525{\text{ }}...{\text{(3)}}$
In graphical method: In this, we will substitute 2 to 3 values of y and get the table following for:
$x+2y = 300$
x | 0 | 300 |
y | 150 | 0 |
$2x + 3y = 525$
x | 0 | 262.5 |
y | 175 | 0 |
Now, putting the value of equation (2) in equation (3), we will get:
$
2(300 - 2y) + 3y = 525 \\
\Rightarrow y = 75 \\
$
And substituting the value of $y = 75$ in (2), we will get $x = 150$.
So, the coach will pay Rs.150 for a bat and Rs.75 for a ball.
Note: Whenever there are 2 equations in 2 variables, the easiest method to solve them is by the elimination method.
Put the value of one variable from one equation into the second equation to get the value of the second variable.
In the graph, the point at which both the lines are intersecting will give the values for x and y.
It can also be verified by solving the equations algebraically.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE