![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The coefficient of thermal conductivity of copper, mercury and glass are respectively ${{\text{K}}_{\text{c}}}\text{,}{{\text{K}}_{\text{m}}}\text{and }{{\text{K}}_{g}}$ such that ${{\text{K}}_{\text{c}}}\prec {{\text{K}}_{\text{m}}}\prec {{\text{K}}_{\text{g}}}$ . If the same quantity of heat is to flow per sec per unit area of each and corresponding temperature gradients are ${{\text{X}}_{\text{c}}}{,}{{\text{X}}_{\text{m}}}\text{ and }{{\text{X}}_{\text{g}}}$ then.
$\begin{align}
& \text{A}\text{. }{{\text{X}}_{\text{c}}}\text{=}{{\text{X}}_{\text{m}}}\text{=}{{\text{X}}_{\text{g}}} \\
& \text{B}\text{. }{{\text{X}}_{\text{c}}}\succ {{\text{X}}_{\text{m}}}\succ {{\text{X}}_{\text{g}}} \\
& \text{C}\text{. }{{\text{X}}_{\text{c}}}\prec {{\text{X}}_{\text{m}}}\prec {{\text{X}}_{\text{g}}} \\
& \text{D}\text{. }{{\text{X}}_{\text{m}}}\prec {{\text{X}}_{\text{c}}}\prec {{\text{X}}_{\text{g}}}
\end{align}$
Answer
485.4k+ views
Hint: We will use the basic law of conduction that is Fourier’s law. This type of question can be solved by observing the relation in the coefficient of thermal conductivity to the temperature gradient and its variation respectively. we can simply observe the relationship and reach the correct solution.
Formula used:
\[Q=-KA\left( \dfrac{dT}{dx} \right)\]
Complete answer:
We know from the basic law of conduction that is Fourier’s law we know that
\[Q=-KA\left( \dfrac{dT}{dx} \right)\]
Where \[\left( \dfrac{dT}{dx} \right)\] = Temperature gradient
So from above, we can conclude that K is inversely proportional to the temperature gradient.
as the temperature gradient increases the coefficient of thermal conductivity decreases and vice versa.
Hence we know that:
\[\begin{align}
& {{\text{K}}_{\text{metal}}}\succ {{\text{K}}_{\text{liquid}}}\succ {{\text{K}}_{\text{gas}}} \\ & \text{ }\!\!~\!\!\text{ }{{\text{X}}_{\text{metal}}}\prec {{\text{X}}_{\text{liquid}}}\prec {{\text{X}}_{\text{gas}}}\text{ } \\
& \text{or} \\
& {{\text{X}}_{\text{copper}}}\prec {{\text{X}}_{\text{mercury}}}\prec {{\text{X}}_{\text{glass}}} \\
\end{align}\]
Ceramic materials have higher conductivity as compared to gas .
So, the correct answer is “Option C”.
Additional Information:
The Fourier equation holds true for all matter solid, liquid, or gas. The vector expression indicates that heat flow is normal to an isotherm and is within the direction of decreasing temperature. Newton’s law of cooling and Ohm’s law are also a type of Fourier’s law.
Note:
Fourier’s law states that the negative gradient of temperature and therefore the time rate of warmth transfer is proportional to the world at right angles of that gradient through which the heat flows. Fourier’s law is the other name of the law of warmth conduction. Discrete and electrical analog of Fourier’s law can also be defined as Newton’s law of cooling and Ohm’s law. The derivation of Fourier’s law was explained with the assistance of an experiment which explained the speed of warmth transfer through a plane layer is proportional to the temperature gradient across the layer and heat transfer area.
Formula used:
\[Q=-KA\left( \dfrac{dT}{dx} \right)\]
Complete answer:
We know from the basic law of conduction that is Fourier’s law we know that
\[Q=-KA\left( \dfrac{dT}{dx} \right)\]
Where \[\left( \dfrac{dT}{dx} \right)\] = Temperature gradient
So from above, we can conclude that K is inversely proportional to the temperature gradient.
as the temperature gradient increases the coefficient of thermal conductivity decreases and vice versa.
Hence we know that:
\[\begin{align}
& {{\text{K}}_{\text{metal}}}\succ {{\text{K}}_{\text{liquid}}}\succ {{\text{K}}_{\text{gas}}} \\ & \text{ }\!\!~\!\!\text{ }{{\text{X}}_{\text{metal}}}\prec {{\text{X}}_{\text{liquid}}}\prec {{\text{X}}_{\text{gas}}}\text{ } \\
& \text{or} \\
& {{\text{X}}_{\text{copper}}}\prec {{\text{X}}_{\text{mercury}}}\prec {{\text{X}}_{\text{glass}}} \\
\end{align}\]
Ceramic materials have higher conductivity as compared to gas .
So, the correct answer is “Option C”.
Additional Information:
The Fourier equation holds true for all matter solid, liquid, or gas. The vector expression indicates that heat flow is normal to an isotherm and is within the direction of decreasing temperature. Newton’s law of cooling and Ohm’s law are also a type of Fourier’s law.
Note:
Fourier’s law states that the negative gradient of temperature and therefore the time rate of warmth transfer is proportional to the world at right angles of that gradient through which the heat flows. Fourier’s law is the other name of the law of warmth conduction. Discrete and electrical analog of Fourier’s law can also be defined as Newton’s law of cooling and Ohm’s law. The derivation of Fourier’s law was explained with the assistance of an experiment which explained the speed of warmth transfer through a plane layer is proportional to the temperature gradient across the layer and heat transfer area.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Maths: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Social Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Physics: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Chemistry: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Biology: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)