Answer
Verified
460.5k+ views
Hint: We can see that in this question ${(1 + {x^2})^{12}}$ is in the form of ${(x + y)^n}$ where $x = 1$ and $y={x^2}$. We also know that the binomial expansion of above expression is ${(x + y)^n}{ = ^n}{C_0}{ + ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2}{ + ^n}{C_3}{x^3} + ....{\,^n}{C_n}{x^n}$. We will expand the above expression in this form. Then, we will multiply $(1 + {x^{12}})\,(1 + {x^{24}})$ these expressions together. Then we will try to find the coefficient of ${x^{24}}$.
Formula used:
${(x + y)^n}{ = ^n}{C_0}{ + ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2}{ + ^n}{C_3}{x^3} + ....{\,^n}{C_n}{x^n}$and $^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}$
Complete step by step answer:
We know that Binomial expansion of ${(x + y)^n}{ = ^n}{C_0}{ + ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2}{ + ^n}{C_3}{x^3} + ....{\,^n}{C_n}{x^n}$
We have ${(1 + {x^2})^{12}}\,(1 + {x^{12}})\,(1 + {x^{24}})$
We will expand ${(1 + {x^2})^{12}}$ by using Binomial expansion as above and we will multiply these two expressions together $(1 + {x^{12}})\,(1 + {x^{24}})$.
Thus, ${(^{12}}{C_0}{ + ^{12}}{C_1}{x^2}{ + ^{12}}{C_2}{x^4}{ + ^{12}}{C_3}{x^6}{ + ^{12}}{C_4}{x^8}{ + ^{12}}{C_5}{x^{10}}{ + ^{12}}{C_6}{x^{12}} + {.....^{12}}{C_{12}}{x^{24}})\,(1 + {x^{12}} + {x^{24}} + {x^{36}})$
$ \Rightarrow {x^{24}}{(^{12}}{C_0}{ + ^{12}}{C_6}{ + ^{12}}{C_{12}})$ (Here we are finding the coefficient of ${x^{24}}$.)
(Here, $^{12}{C_0} = \dfrac{{12!}}{{12! \times 0!}}$ = 1, we know that 0! is 1 and $^{12}{C_{12}} = \dfrac{{12!}}{{0! \times 12!}}$ = 1)
$ \Rightarrow {x^{24}}(1{ + ^{12}}{C_6} + 1)$
$ \Rightarrow {x^{24}}{(^{12}}{C_6} + 2)$
Thus, the coefficient of ${x^{24}}$ is $^{12}{C_6} + 2$.
Hence, Option B is the correct option.
Note:
Students must know the binomial expansion on ${(x + y)^n}$. They should also take care while using the formula of the combination when they are solving for $^{12}{C_0}$&$^{12}{C_1}$. While solving this question, students should pick all the coefficients of \[{x^{24}}\] carefully. If any of the coefficients is left then you will get an incorrect answer. You might find Binomial expansion lengthy and tedious to calculate. But a binomial expression that has large power can be easily calculated with the help of the Binomial Theorem. $^n{C_0}$, $^n{C_1}$, $^n{C_2}$…., $^n{C_n}$ are called binomial coefficients and can represented by ${C_0}$, ${C_1}$, ${C_2}$, …., ${C_n}$. The total number of terms in the expansion of ${\left( {x + y} \right)^n}$ are $(n + 1)$. These are a few important things about binomial expansion. You should keep all these things in your mind while solving these types of questions.
Formula used:
${(x + y)^n}{ = ^n}{C_0}{ + ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2}{ + ^n}{C_3}{x^3} + ....{\,^n}{C_n}{x^n}$and $^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}$
Complete step by step answer:
We know that Binomial expansion of ${(x + y)^n}{ = ^n}{C_0}{ + ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2}{ + ^n}{C_3}{x^3} + ....{\,^n}{C_n}{x^n}$
We have ${(1 + {x^2})^{12}}\,(1 + {x^{12}})\,(1 + {x^{24}})$
We will expand ${(1 + {x^2})^{12}}$ by using Binomial expansion as above and we will multiply these two expressions together $(1 + {x^{12}})\,(1 + {x^{24}})$.
Thus, ${(^{12}}{C_0}{ + ^{12}}{C_1}{x^2}{ + ^{12}}{C_2}{x^4}{ + ^{12}}{C_3}{x^6}{ + ^{12}}{C_4}{x^8}{ + ^{12}}{C_5}{x^{10}}{ + ^{12}}{C_6}{x^{12}} + {.....^{12}}{C_{12}}{x^{24}})\,(1 + {x^{12}} + {x^{24}} + {x^{36}})$
$ \Rightarrow {x^{24}}{(^{12}}{C_0}{ + ^{12}}{C_6}{ + ^{12}}{C_{12}})$ (Here we are finding the coefficient of ${x^{24}}$.)
(Here, $^{12}{C_0} = \dfrac{{12!}}{{12! \times 0!}}$ = 1, we know that 0! is 1 and $^{12}{C_{12}} = \dfrac{{12!}}{{0! \times 12!}}$ = 1)
$ \Rightarrow {x^{24}}(1{ + ^{12}}{C_6} + 1)$
$ \Rightarrow {x^{24}}{(^{12}}{C_6} + 2)$
Thus, the coefficient of ${x^{24}}$ is $^{12}{C_6} + 2$.
Hence, Option B is the correct option.
Note:
Students must know the binomial expansion on ${(x + y)^n}$. They should also take care while using the formula of the combination when they are solving for $^{12}{C_0}$&$^{12}{C_1}$. While solving this question, students should pick all the coefficients of \[{x^{24}}\] carefully. If any of the coefficients is left then you will get an incorrect answer. You might find Binomial expansion lengthy and tedious to calculate. But a binomial expression that has large power can be easily calculated with the help of the Binomial Theorem. $^n{C_0}$, $^n{C_1}$, $^n{C_2}$…., $^n{C_n}$ are called binomial coefficients and can represented by ${C_0}$, ${C_1}$, ${C_2}$, …., ${C_n}$. The total number of terms in the expansion of ${\left( {x + y} \right)^n}$ are $(n + 1)$. These are a few important things about binomial expansion. You should keep all these things in your mind while solving these types of questions.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE