Answer
Verified
460.8k+ views
Hint: We will factorize the given equation to find the three sides of the triangle. Then we will look at the range of the x-coordinate for the interior points of the triangle. The value of $\sec \theta $ will have to lie inside this range. We will use the inverse trigonometric function ${{\sec }^{-1}}\theta $ to find the value of $\theta $.
Complete step by step answer:
The given equation is $\left( {{x}^{2}}-{{y}^{2}} \right)\left( 2x+3y-6 \right)=0$. We can further factorize this equation using the identity $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$ in the following manner,
$\left( x+y \right)\left( x-y \right)\left( 2x+3y-6 \right)=0$.
This implies that we have the following three equations,
$x+y=0$....(i)
$x-y=0$....(ii)
$2x+3y-6=0$....(iii)
We can see that the point of intersection of equation (i) and equation (ii) is $\left( 0,0 \right)$.
We will substitute $x=-y$ from equation (i) in equation (iii), as follows,
$2\left( -y \right)+3y-6=0$
Solving the above equation for $y$, we get
$\begin{align}
& y-6=0 \\
& \therefore y=6 \\
\end{align}$
Therefore, we get $x=-6$. Hence, the point of intersection of equation (i) and equation (iii) is $\left( -6,6 \right)$.
Similarly, we will substitute $x=y$ from equation (ii) in equation (iii), as follows,
$2y+3y-6=0$
Solving the above equation for $y$, we get
$\begin{align}
& 5y-6=0 \\
& \therefore y=\dfrac{6}{5}=1.2 \\
\end{align}$
Therefore, we get $x=\dfrac{6}{5}=1.2$. Hence, the point of intersection of equation (ii) and equation (iii) is $\left( \dfrac{6}{5},\dfrac{6}{5} \right)=\left( 1.2,1.2 \right)$.
Now, we know that the range of the secant function is $\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)$. The intersection of the range of the secant function and the triangle is $\left[ -6,-1 \right]\cup \left[ 1,1.2 \right]$. Therefore, $\sec \theta \in \left[ -6,-1 \right]\cup \left[ 1,1.2 \right]$. Hence, $\theta \in \left[ {{\sec }^{-1}}\left( -6 \right),{{\sec }^{-1}}\left( -1 \right) \right]\cup \left[ {{\sec }^{-1}}\left( 1 \right),{{\sec }^{-1}}\left( 1.2 \right) \right]$, that is $\theta \in \left[ {{\sec }^{-1}}\left( -6 \right),\pi \right]\cup \left[ 0,{{\sec }^{-1}}\left( 1.2 \right) \right]$.
Note: We can plot the graph of the three equations and look at the triangle formed as shown in the figure below,
The specific values for arcsec functions are a bit difficult to calculate. We should be familiar with the principle values for inverse trigonometric functions.
Complete step by step answer:
The given equation is $\left( {{x}^{2}}-{{y}^{2}} \right)\left( 2x+3y-6 \right)=0$. We can further factorize this equation using the identity $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$ in the following manner,
$\left( x+y \right)\left( x-y \right)\left( 2x+3y-6 \right)=0$.
This implies that we have the following three equations,
$x+y=0$....(i)
$x-y=0$....(ii)
$2x+3y-6=0$....(iii)
We can see that the point of intersection of equation (i) and equation (ii) is $\left( 0,0 \right)$.
We will substitute $x=-y$ from equation (i) in equation (iii), as follows,
$2\left( -y \right)+3y-6=0$
Solving the above equation for $y$, we get
$\begin{align}
& y-6=0 \\
& \therefore y=6 \\
\end{align}$
Therefore, we get $x=-6$. Hence, the point of intersection of equation (i) and equation (iii) is $\left( -6,6 \right)$.
Similarly, we will substitute $x=y$ from equation (ii) in equation (iii), as follows,
$2y+3y-6=0$
Solving the above equation for $y$, we get
$\begin{align}
& 5y-6=0 \\
& \therefore y=\dfrac{6}{5}=1.2 \\
\end{align}$
Therefore, we get $x=\dfrac{6}{5}=1.2$. Hence, the point of intersection of equation (ii) and equation (iii) is $\left( \dfrac{6}{5},\dfrac{6}{5} \right)=\left( 1.2,1.2 \right)$.
Now, we know that the range of the secant function is $\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)$. The intersection of the range of the secant function and the triangle is $\left[ -6,-1 \right]\cup \left[ 1,1.2 \right]$. Therefore, $\sec \theta \in \left[ -6,-1 \right]\cup \left[ 1,1.2 \right]$. Hence, $\theta \in \left[ {{\sec }^{-1}}\left( -6 \right),{{\sec }^{-1}}\left( -1 \right) \right]\cup \left[ {{\sec }^{-1}}\left( 1 \right),{{\sec }^{-1}}\left( 1.2 \right) \right]$, that is $\theta \in \left[ {{\sec }^{-1}}\left( -6 \right),\pi \right]\cup \left[ 0,{{\sec }^{-1}}\left( 1.2 \right) \right]$.
Note: We can plot the graph of the three equations and look at the triangle formed as shown in the figure below,
The specific values for arcsec functions are a bit difficult to calculate. We should be familiar with the principle values for inverse trigonometric functions.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE