The common difference of the AP whose general term \[{a_n} = 2n + 1\] is
Answer
Verified
477.3k+ views
Hint: In this question, first of all, we will put the values of \[n = 1,2,3,4,...\] in the general term \[{a_n} = 2n + 1\] in order to get the Arithmetic progression after that take the difference between the terms of AP and the difference will be called as the common difference of the AP.
Complete step by step solution: We have been given general term of Arithmetic progression as \[{a_n} = 2n + 1\]
Now, we will put the values of \[n = 1,2,3,4,...\] in \[{a_n} = 2n + 1\] in order to get the AP.
For \[n = 1\] we get,
\[{a_1} = 2\left( 1 \right) + 1\]
\[ \Rightarrow {a_1} = 2 + 1\]
\[ \Rightarrow {a_1} = 3\]
For \[n = 2\] we get,
\[{a_2} = 2\left( 2 \right) + 1\]
\[ \Rightarrow {a_2} = 4 + 1\]
\[ \Rightarrow {a_2} = 5\]
For \[n = 3\] we get,
\[{a_3} = 2\left( 3 \right) + 1\]
\[ \Rightarrow {a_3} = 6 + 1\]
\[ \Rightarrow {a_3} = 7\]
For \[n = 4\] we get,
\[{a_4} = 2\left( 4 \right) + 1\]
\[ \Rightarrow {a_4} = 8 + 1\]
\[ \Rightarrow {a_4} = 9\]
Therefore, A.P. is \[3,5,7,9,...\]
Difference between 3 and 5 is 2.
Similarly,
Difference between 5 and 7 is 2 and
Difference between 7 and 9 is 2.
Hence, Common difference of arithmetic progression is 2.
Note: An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant.
In an arithmetic progression the first term of a sequence is denoted by \[{a_1}\] and the difference of successive member is d which is also called as common difference since it’s common for all the successive numbers, then the nth term of sequence \[\left( {{a_n}} \right)\] is given by, \[{a_n} = {a_1} + \left( {n - 1} \right)d\].
Complete step by step solution: We have been given general term of Arithmetic progression as \[{a_n} = 2n + 1\]
Now, we will put the values of \[n = 1,2,3,4,...\] in \[{a_n} = 2n + 1\] in order to get the AP.
For \[n = 1\] we get,
\[{a_1} = 2\left( 1 \right) + 1\]
\[ \Rightarrow {a_1} = 2 + 1\]
\[ \Rightarrow {a_1} = 3\]
For \[n = 2\] we get,
\[{a_2} = 2\left( 2 \right) + 1\]
\[ \Rightarrow {a_2} = 4 + 1\]
\[ \Rightarrow {a_2} = 5\]
For \[n = 3\] we get,
\[{a_3} = 2\left( 3 \right) + 1\]
\[ \Rightarrow {a_3} = 6 + 1\]
\[ \Rightarrow {a_3} = 7\]
For \[n = 4\] we get,
\[{a_4} = 2\left( 4 \right) + 1\]
\[ \Rightarrow {a_4} = 8 + 1\]
\[ \Rightarrow {a_4} = 9\]
Therefore, A.P. is \[3,5,7,9,...\]
Difference between 3 and 5 is 2.
Similarly,
Difference between 5 and 7 is 2 and
Difference between 7 and 9 is 2.
Hence, Common difference of arithmetic progression is 2.
Note: An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant.
In an arithmetic progression the first term of a sequence is denoted by \[{a_1}\] and the difference of successive member is d which is also called as common difference since it’s common for all the successive numbers, then the nth term of sequence \[\left( {{a_n}} \right)\] is given by, \[{a_n} = {a_1} + \left( {n - 1} \right)d\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE