The coordinates for a rhombus are given as $(2a,0),(0,2b),( - 2a,0),and(0, - 2b)$ . How does one prove that the midpoints of the sides of a rhombus determine a rectangle using coordinate geometry?
Answer
Verified
433.8k+ views
Hint: The Midpoint Formula works precisely the same way as If you would like to search out the purpose that's exactly halfway between two given points, just average the x-values and therefore the y-values.
Complete step-by-step solution:
Let the coordinates of a rhombus as
$A(2a,0),B(0,2b),C( - 2a,0)$ and $D(0, - 2b)$ .
Let the midpoint of $AB$be $P$ .
Therefore , coordinates are given as ,
$P = \left( {\dfrac{{0 + 2a}}{2},\dfrac{{0 + 2b}}{2}} \right) = (a,b)$
Let the midpoint of $BC$be $Q$ .
Therefore , coordinates are given as ,
$Q = \left( {\dfrac{{ - 2a + 0}}{2},\dfrac{{0 + 2b}}{2}} \right) = ( - a,b)$
Let the midpoint of $CD$be $R$ .
Therefore , coordinates are given as ,
$R = \left( {\dfrac{{0 - 2a}}{2},\dfrac{{ - 2b + 0}}{2}} \right) = ( - a, - b)$
Let the midpoint of $DA$be $S$ .
Therefore , coordinates are given as ,
$S = \left( {\dfrac{{2a + 0}}{2},\dfrac{{0 - 2b}}{2}} \right) = (a, - b)$
It can be seen that $P$ lies in quadrant $I$, $Q$ in Quadrant $II$ , $R$ in $III$ and $S$ in $IV$, Further $P$ and $Q$ are the reflections of each other in y-axis, $Q$ and $R$ are the reflections of each other in x-axis, $R$ and $S$ are reflection of each other in y -axis and $S$ and $P$ are reflection of each other in x -axis.
Hence, the mid points of the rhombus form the rectangle.
Note: Sometimes you would like to seek out the purpose that's exactly midway between two other points. For example, you may find a line that bisects (divides into two equal halves) a given line segment. This middle point is named the "midpoint". The concept doesn't come up often, but the Formula is sort of simple and obvious, so you must easily be able to recall it for later.
Complete step-by-step solution:
Let the coordinates of a rhombus as
$A(2a,0),B(0,2b),C( - 2a,0)$ and $D(0, - 2b)$ .
Let the midpoint of $AB$be $P$ .
Therefore , coordinates are given as ,
$P = \left( {\dfrac{{0 + 2a}}{2},\dfrac{{0 + 2b}}{2}} \right) = (a,b)$
Let the midpoint of $BC$be $Q$ .
Therefore , coordinates are given as ,
$Q = \left( {\dfrac{{ - 2a + 0}}{2},\dfrac{{0 + 2b}}{2}} \right) = ( - a,b)$
Let the midpoint of $CD$be $R$ .
Therefore , coordinates are given as ,
$R = \left( {\dfrac{{0 - 2a}}{2},\dfrac{{ - 2b + 0}}{2}} \right) = ( - a, - b)$
Let the midpoint of $DA$be $S$ .
Therefore , coordinates are given as ,
$S = \left( {\dfrac{{2a + 0}}{2},\dfrac{{0 - 2b}}{2}} \right) = (a, - b)$
It can be seen that $P$ lies in quadrant $I$, $Q$ in Quadrant $II$ , $R$ in $III$ and $S$ in $IV$, Further $P$ and $Q$ are the reflections of each other in y-axis, $Q$ and $R$ are the reflections of each other in x-axis, $R$ and $S$ are reflection of each other in y -axis and $S$ and $P$ are reflection of each other in x -axis.
Hence, the mid points of the rhombus form the rectangle.
Note: Sometimes you would like to seek out the purpose that's exactly midway between two other points. For example, you may find a line that bisects (divides into two equal halves) a given line segment. This middle point is named the "midpoint". The concept doesn't come up often, but the Formula is sort of simple and obvious, so you must easily be able to recall it for later.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE