The correct formula of critical velocity ${{v}_{c}}$ is
A. ${{v}_{c}}=\dfrac{k\eta d}{r}$
B. ${{v}_{c}}=\dfrac{k\eta }{dr}$
C. ${{v}_{c}}=\dfrac{dr}{k\eta }$
D. ${{v}_{c}}=\dfrac{r\eta }{dk}$
Answer
Verified
470.7k+ views
Hint: Derive the formula of critical velocity using dimensional analysis.
Complete step by step solution:
Critical velocity depends on coefficient of viscosity $\eta$, density of fluid $d$ and radius of tube $r$ . The dimension of each is
$\begin{align}
& {{v}_{c}}=L{{T}^{-}}^{1} \\
& \eta =M{{L}^{-}}^{1}{{T}^{-}}^{1} \\
& d=M{{L}^{-}}^{3} \\
& r=L \\
\end{align}$
Using dimensional analysis with $a,b\text{ and }c$ as integers
$\begin{align}
& {{v}_{c}}=k{{(\eta )}^{a}}{{(d)}^{b}}{{(r)}^{c}} \\
& L{{T}^{-}}^{1}={{(M{{L}^{-}}^{1}{{T}^{-}}^{1})}^{a}}{{(M{{L}^{-}}^{3})}^{b}}{{(L)}^{c}} \\
\end{align}$
Comparing the coefficients of $M,L\;\text{and }T$ on both sides
$\begin{align}
& a+b=0 \\
& -a-3b+c=1 \\
& -a=-1 \\
\end{align}$
Solving for $a,b\text{ and }c$
$\begin{align}
& a=+1 \\
& b=-1 \\
& c=-1 \\
\end{align}$
Therefore
${{v}_{c}}=\dfrac{k\eta }{dr}$
The correct answer is option B.
Note: Critical velocity is the velocity at which a liquid transitions from subcritical flow to supercritical flow.
Complete step by step solution:
Critical velocity depends on coefficient of viscosity $\eta$, density of fluid $d$ and radius of tube $r$ . The dimension of each is
$\begin{align}
& {{v}_{c}}=L{{T}^{-}}^{1} \\
& \eta =M{{L}^{-}}^{1}{{T}^{-}}^{1} \\
& d=M{{L}^{-}}^{3} \\
& r=L \\
\end{align}$
Using dimensional analysis with $a,b\text{ and }c$ as integers
$\begin{align}
& {{v}_{c}}=k{{(\eta )}^{a}}{{(d)}^{b}}{{(r)}^{c}} \\
& L{{T}^{-}}^{1}={{(M{{L}^{-}}^{1}{{T}^{-}}^{1})}^{a}}{{(M{{L}^{-}}^{3})}^{b}}{{(L)}^{c}} \\
\end{align}$
Comparing the coefficients of $M,L\;\text{and }T$ on both sides
$\begin{align}
& a+b=0 \\
& -a-3b+c=1 \\
& -a=-1 \\
\end{align}$
Solving for $a,b\text{ and }c$
$\begin{align}
& a=+1 \\
& b=-1 \\
& c=-1 \\
\end{align}$
Therefore
${{v}_{c}}=\dfrac{k\eta }{dr}$
The correct answer is option B.
Note: Critical velocity is the velocity at which a liquid transitions from subcritical flow to supercritical flow.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE