
The correct formula of critical velocity ${{v}_{c}}$ is
A. ${{v}_{c}}=\dfrac{k\eta d}{r}$
B. ${{v}_{c}}=\dfrac{k\eta }{dr}$
C. ${{v}_{c}}=\dfrac{dr}{k\eta }$
D. ${{v}_{c}}=\dfrac{r\eta }{dk}$
Answer
587.1k+ views
Hint: Derive the formula of critical velocity using dimensional analysis.
Complete step by step solution:
Critical velocity depends on coefficient of viscosity $\eta$, density of fluid $d$ and radius of tube $r$ . The dimension of each is
$\begin{align}
& {{v}_{c}}=L{{T}^{-}}^{1} \\
& \eta =M{{L}^{-}}^{1}{{T}^{-}}^{1} \\
& d=M{{L}^{-}}^{3} \\
& r=L \\
\end{align}$
Using dimensional analysis with $a,b\text{ and }c$ as integers
$\begin{align}
& {{v}_{c}}=k{{(\eta )}^{a}}{{(d)}^{b}}{{(r)}^{c}} \\
& L{{T}^{-}}^{1}={{(M{{L}^{-}}^{1}{{T}^{-}}^{1})}^{a}}{{(M{{L}^{-}}^{3})}^{b}}{{(L)}^{c}} \\
\end{align}$
Comparing the coefficients of $M,L\;\text{and }T$ on both sides
$\begin{align}
& a+b=0 \\
& -a-3b+c=1 \\
& -a=-1 \\
\end{align}$
Solving for $a,b\text{ and }c$
$\begin{align}
& a=+1 \\
& b=-1 \\
& c=-1 \\
\end{align}$
Therefore
${{v}_{c}}=\dfrac{k\eta }{dr}$
The correct answer is option B.
Note: Critical velocity is the velocity at which a liquid transitions from subcritical flow to supercritical flow.
Complete step by step solution:
Critical velocity depends on coefficient of viscosity $\eta$, density of fluid $d$ and radius of tube $r$ . The dimension of each is
$\begin{align}
& {{v}_{c}}=L{{T}^{-}}^{1} \\
& \eta =M{{L}^{-}}^{1}{{T}^{-}}^{1} \\
& d=M{{L}^{-}}^{3} \\
& r=L \\
\end{align}$
Using dimensional analysis with $a,b\text{ and }c$ as integers
$\begin{align}
& {{v}_{c}}=k{{(\eta )}^{a}}{{(d)}^{b}}{{(r)}^{c}} \\
& L{{T}^{-}}^{1}={{(M{{L}^{-}}^{1}{{T}^{-}}^{1})}^{a}}{{(M{{L}^{-}}^{3})}^{b}}{{(L)}^{c}} \\
\end{align}$
Comparing the coefficients of $M,L\;\text{and }T$ on both sides
$\begin{align}
& a+b=0 \\
& -a-3b+c=1 \\
& -a=-1 \\
\end{align}$
Solving for $a,b\text{ and }c$
$\begin{align}
& a=+1 \\
& b=-1 \\
& c=-1 \\
\end{align}$
Therefore
${{v}_{c}}=\dfrac{k\eta }{dr}$
The correct answer is option B.
Note: Critical velocity is the velocity at which a liquid transitions from subcritical flow to supercritical flow.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

