
The correct order of ‘${\text{S}} - {\text{O}}$’ bond length is-
(A) ${\text{SO}}_3^{2 - } > {\text{SO}}_4^{2 - } > {\text{S}}{{\text{O}}_3} > {\text{S}}{{\text{O}}_2}$
(B) ${\text{SO}}_3^{2 - } > {\text{SO}}_4^{2 - } > {\text{S}}{{\text{O}}_2} > {\text{S}}{{\text{O}}_3}$
(C) ${\text{SO}}_4^{2 - } > {\text{SO}}_3^{2 - } > {\text{S}}{{\text{O}}_2} > {\text{S}}{{\text{O}}_3}$
(D) ${\text{SO}}_4^{2 - } > {\text{SO}}_3^{2 - } > {\text{S}}{{\text{O}}_3} > {\text{S}}{{\text{O}}_2}$
Answer
558.6k+ views
Hint: The average distance between the nuclei of the two bonded atoms is known as bond length.The number of covalent bonds in any molecule is known as its bond order. The bond length is inversely proportional to the bond order.
Formulae used:
${\text{Bond order}} = \dfrac{{{\text{Total number of bonds between two atoms}}}}{{{\text{Total number of canonical form}}}}$
\[{\text{Bond length}} \propto \dfrac{1}{{{\text{Bond order}}}}\]
Complete step by step solution:
We are given four species ${\text{SO}}_3^{2 - }$, ${\text{SO}}_4^{2 - }$, ${\text{S}}{{\text{O}}_3}$ and ${\text{S}}{{\text{O}}_2}$.
Determine the bond order of ${\text{SO}}_3^{2 - }$ as follows:
The structure of ${\text{SO}}_3^{2 - }$ is as follows:
The number of bonds between the atoms in ${\text{SO}}_3^{2 - }$ is 4. The number of canonical forms of ${\text{SO}}_3^{2 - }$ is 3. The bond order of ${\text{SO}}_3^{2 - }$ is,
${\text{Bond order of SO}}_3^{2 - } = \dfrac{{\text{4}}}{{\text{3}}} = 1.33$
Thus, the bond order of ${\text{SO}}_3^{2 - }$ is 1.33.
Determine the bond order of ${\text{SO}}_4^{2 - }$ as follows:
The structure of ${\text{SO}}_4^{2 - }$ is as follows:
The number of bonds between the atoms in ${\text{SO}}_4^{2 - }$ is 6. The number of canonical forms of ${\text{SO}}_4^{2 - }$ is 4. The bond order of ${\text{SO}}_4^{2 - }$ is,
${\text{Bond order of SO}}_4^{2 - } = \dfrac{{\text{6}}}{{\text{4}}} = 1.5$
Thus, the bond order of ${\text{SO}}_4^{2 - }$ is 1.5.
Determine the bond order of ${\text{S}}{{\text{O}}_3}$ as follows:
The structure of ${\text{S}}{{\text{O}}_3}$ is as follows:
The number of bonds between the atoms in ${\text{S}}{{\text{O}}_3}$ is 6. The number of canonical forms of ${\text{S}}{{\text{O}}_3}$ is 3. The bond order of ${\text{S}}{{\text{O}}_3}$ is,
${\text{Bond order of S}}{{\text{O}}_3} = \dfrac{{\text{6}}}{{\text{3}}} = 2$
Thus, the bond order of ${\text{S}}{{\text{O}}_3}$ is 2.
Determine the bond order of ${\text{S}}{{\text{O}}_2}$ as follows:
The structure of ${\text{S}}{{\text{O}}_2}$ is as follows:
The number of bonds between the atoms in ${\text{S}}{{\text{O}}_2}$ is 6. The number of canonical forms of ${\text{S}}{{\text{O}}_2}$ is 3. The bond order of ${\text{S}}{{\text{O}}_2}$ is,
${\text{Bond order of S}}{{\text{O}}_2} = \dfrac{{\text{4}}}{{\text{2}}} = 2$
Thus, the bond order of ${\text{S}}{{\text{O}}_2}$ is 2.
Thus, the decreasing order of bond order is,
${\text{S}}{{\text{O}}_3} = {\text{S}}{{\text{O}}_2} > {\text{SO}}_4^{2 - } > {\text{SO}}_3^{2 - }$
The bond orders of ${\text{S}}{{\text{O}}_3}$ and ${\text{S}}{{\text{O}}_2}$ are same. But the bond pair-bond pair repulsion is higher in ${\text{S}}{{\text{O}}_3}$ and thus, the ${\text{S}} - {\text{O}}$ bond length in ${\text{S}}{{\text{O}}_3}$ is smaller than that in ${\text{S}}{{\text{O}}_2}$.
The bond length is inversely proportional to the bond order. Thus, the decreasing order of bond length is,
${\text{SO}}_3^{2 - } > {\text{SO}}_4^{2 - } > {\text{S}}{{\text{O}}_2} > {\text{S}}{{\text{O}}_3}$
Thus, the correct option is (B) ${\text{SO}}_3^{2 - } > {\text{SO}}_4^{2 - } > {\text{S}}{{\text{O}}_2} > {\text{S}}{{\text{O}}_3}$.
Note: The bond orders of ${\text{S}}{{\text{O}}_3}$ and ${\text{S}}{{\text{O}}_2}$ are same. But the bond pair-bond pair repulsion is higher in ${\text{S}}{{\text{O}}_3}$ and thus, the ${\text{S}} - {\text{O}}$ bond length in ${\text{S}}{{\text{O}}_3}$ is smaller than that in ${\text{S}}{{\text{O}}_2}$.
Formulae used:
${\text{Bond order}} = \dfrac{{{\text{Total number of bonds between two atoms}}}}{{{\text{Total number of canonical form}}}}$
\[{\text{Bond length}} \propto \dfrac{1}{{{\text{Bond order}}}}\]
Complete step by step solution:
We are given four species ${\text{SO}}_3^{2 - }$, ${\text{SO}}_4^{2 - }$, ${\text{S}}{{\text{O}}_3}$ and ${\text{S}}{{\text{O}}_2}$.
Determine the bond order of ${\text{SO}}_3^{2 - }$ as follows:
The structure of ${\text{SO}}_3^{2 - }$ is as follows:
The number of bonds between the atoms in ${\text{SO}}_3^{2 - }$ is 4. The number of canonical forms of ${\text{SO}}_3^{2 - }$ is 3. The bond order of ${\text{SO}}_3^{2 - }$ is,
${\text{Bond order of SO}}_3^{2 - } = \dfrac{{\text{4}}}{{\text{3}}} = 1.33$
Thus, the bond order of ${\text{SO}}_3^{2 - }$ is 1.33.
Determine the bond order of ${\text{SO}}_4^{2 - }$ as follows:
The structure of ${\text{SO}}_4^{2 - }$ is as follows:
The number of bonds between the atoms in ${\text{SO}}_4^{2 - }$ is 6. The number of canonical forms of ${\text{SO}}_4^{2 - }$ is 4. The bond order of ${\text{SO}}_4^{2 - }$ is,
${\text{Bond order of SO}}_4^{2 - } = \dfrac{{\text{6}}}{{\text{4}}} = 1.5$
Thus, the bond order of ${\text{SO}}_4^{2 - }$ is 1.5.
Determine the bond order of ${\text{S}}{{\text{O}}_3}$ as follows:
The structure of ${\text{S}}{{\text{O}}_3}$ is as follows:
The number of bonds between the atoms in ${\text{S}}{{\text{O}}_3}$ is 6. The number of canonical forms of ${\text{S}}{{\text{O}}_3}$ is 3. The bond order of ${\text{S}}{{\text{O}}_3}$ is,
${\text{Bond order of S}}{{\text{O}}_3} = \dfrac{{\text{6}}}{{\text{3}}} = 2$
Thus, the bond order of ${\text{S}}{{\text{O}}_3}$ is 2.
Determine the bond order of ${\text{S}}{{\text{O}}_2}$ as follows:
The structure of ${\text{S}}{{\text{O}}_2}$ is as follows:
The number of bonds between the atoms in ${\text{S}}{{\text{O}}_2}$ is 6. The number of canonical forms of ${\text{S}}{{\text{O}}_2}$ is 3. The bond order of ${\text{S}}{{\text{O}}_2}$ is,
${\text{Bond order of S}}{{\text{O}}_2} = \dfrac{{\text{4}}}{{\text{2}}} = 2$
Thus, the bond order of ${\text{S}}{{\text{O}}_2}$ is 2.
Thus, the decreasing order of bond order is,
${\text{S}}{{\text{O}}_3} = {\text{S}}{{\text{O}}_2} > {\text{SO}}_4^{2 - } > {\text{SO}}_3^{2 - }$
The bond orders of ${\text{S}}{{\text{O}}_3}$ and ${\text{S}}{{\text{O}}_2}$ are same. But the bond pair-bond pair repulsion is higher in ${\text{S}}{{\text{O}}_3}$ and thus, the ${\text{S}} - {\text{O}}$ bond length in ${\text{S}}{{\text{O}}_3}$ is smaller than that in ${\text{S}}{{\text{O}}_2}$.
The bond length is inversely proportional to the bond order. Thus, the decreasing order of bond length is,
${\text{SO}}_3^{2 - } > {\text{SO}}_4^{2 - } > {\text{S}}{{\text{O}}_2} > {\text{S}}{{\text{O}}_3}$
Thus, the correct option is (B) ${\text{SO}}_3^{2 - } > {\text{SO}}_4^{2 - } > {\text{S}}{{\text{O}}_2} > {\text{S}}{{\text{O}}_3}$.
Note: The bond orders of ${\text{S}}{{\text{O}}_3}$ and ${\text{S}}{{\text{O}}_2}$ are same. But the bond pair-bond pair repulsion is higher in ${\text{S}}{{\text{O}}_3}$ and thus, the ${\text{S}} - {\text{O}}$ bond length in ${\text{S}}{{\text{O}}_3}$ is smaller than that in ${\text{S}}{{\text{O}}_2}$.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

