
The corresponding sides of two similar triangles are in the ratio $1:3$ . If the area of the smaller triangle is 40 $c{m^2}$, find the area of the larger triangle.
Answer
585.9k+ views
Hint – Whenever you come across this type of problem, always use the concept that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Complete step by step answer:
The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore $ $\left[ {\dfrac{{{{\left( {{\text{Side of the smaller triangle}}} \right)}^{\text{2}}}}}{{{{\left( {{\text{Side of the larger triangle}}} \right)}^{\text{2}}}}}} \right]{\text{ = }}\left( {\dfrac{{{\text{Area of the smaller triangle}}}}{{{\text{Area of the larger triangle}}}}} \right)$
Let the area of the larger triangle be x
Now we know that the ratio of sides of the triangles = $\dfrac{1}{3}$
Hence ${\left( {\dfrac{1}{3}} \right)^2} = \dfrac{{40}}{x}$
$\Rightarrow \dfrac{1}{9} = \dfrac{{40}}{x}$
$\Rightarrow x = 40 \times 9$
$\Rightarrow x = 360{\text{ c}}{{\text{m}}^2}$
Area of the larger triangle is 360 $c{m^2}$.
Note - Whenever you come to this type of problem first let assume a variable for unknown and after that apply the theorem of triangles (The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides) And easily get the required answer.
Complete step by step answer:
The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore $ $\left[ {\dfrac{{{{\left( {{\text{Side of the smaller triangle}}} \right)}^{\text{2}}}}}{{{{\left( {{\text{Side of the larger triangle}}} \right)}^{\text{2}}}}}} \right]{\text{ = }}\left( {\dfrac{{{\text{Area of the smaller triangle}}}}{{{\text{Area of the larger triangle}}}}} \right)$
Let the area of the larger triangle be x
Now we know that the ratio of sides of the triangles = $\dfrac{1}{3}$
Hence ${\left( {\dfrac{1}{3}} \right)^2} = \dfrac{{40}}{x}$
$\Rightarrow \dfrac{1}{9} = \dfrac{{40}}{x}$
$\Rightarrow x = 40 \times 9$
$\Rightarrow x = 360{\text{ c}}{{\text{m}}^2}$
Area of the larger triangle is 360 $c{m^2}$.
Note - Whenever you come to this type of problem first let assume a variable for unknown and after that apply the theorem of triangles (The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides) And easily get the required answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

