The corresponding sides of two similar triangles are in the ratio $1:3$ . If the area of the smaller triangle is 40 $c{m^2}$, find the area of the larger triangle.
Answer
Verified
484.8k+ views
Hint – Whenever you come across this type of problem, always use the concept that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Complete step by step answer:
The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore $ $\left[ {\dfrac{{{{\left( {{\text{Side of the smaller triangle}}} \right)}^{\text{2}}}}}{{{{\left( {{\text{Side of the larger triangle}}} \right)}^{\text{2}}}}}} \right]{\text{ = }}\left( {\dfrac{{{\text{Area of the smaller triangle}}}}{{{\text{Area of the larger triangle}}}}} \right)$
Let the area of the larger triangle be x
Now we know that the ratio of sides of the triangles = $\dfrac{1}{3}$
Hence ${\left( {\dfrac{1}{3}} \right)^2} = \dfrac{{40}}{x}$
$\Rightarrow \dfrac{1}{9} = \dfrac{{40}}{x}$
$\Rightarrow x = 40 \times 9$
$\Rightarrow x = 360{\text{ c}}{{\text{m}}^2}$
Area of the larger triangle is 360 $c{m^2}$.
Note - Whenever you come to this type of problem first let assume a variable for unknown and after that apply the theorem of triangles (The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides) And easily get the required answer.
Complete step by step answer:
The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore $ $\left[ {\dfrac{{{{\left( {{\text{Side of the smaller triangle}}} \right)}^{\text{2}}}}}{{{{\left( {{\text{Side of the larger triangle}}} \right)}^{\text{2}}}}}} \right]{\text{ = }}\left( {\dfrac{{{\text{Area of the smaller triangle}}}}{{{\text{Area of the larger triangle}}}}} \right)$
Let the area of the larger triangle be x
Now we know that the ratio of sides of the triangles = $\dfrac{1}{3}$
Hence ${\left( {\dfrac{1}{3}} \right)^2} = \dfrac{{40}}{x}$
$\Rightarrow \dfrac{1}{9} = \dfrac{{40}}{x}$
$\Rightarrow x = 40 \times 9$
$\Rightarrow x = 360{\text{ c}}{{\text{m}}^2}$
Area of the larger triangle is 360 $c{m^2}$.
Note - Whenever you come to this type of problem first let assume a variable for unknown and after that apply the theorem of triangles (The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides) And easily get the required answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE