Answer
Verified
499.5k+ views
Hint: Write the equations. Then convert it in the form of a matrix $X={{D}^{-1}}B$ and find the inverse. And so place the inverse matrix and solve it you will get the price per unit of three commodities.
Now we can see in question.
Let the cost of each item per kg be $x$,$y$ and $z$.
So for first, we get the equation as,
$4x+3y+2z=60$……….. (1)
So for a second, we get the equation as,
$2x+4y+6z=90$………… (2)
So for the third, we get the equation as,
$6x+2y+3z=70$ ………… (3)
So now equation (1), (2) and (3) can be written in matrix form that is,
$DX=B$
Where $D=\left[ \begin{matrix}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3 \\
\end{matrix} \right]$,
$X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]$and\[B=\left[ \begin{matrix}
60 \\
90 \\
70 \\
\end{matrix} \right]\],
So now to find the cost of each item per kg, we have to find $x$, $y$ and $z$.
So we have to find a matrix $X$.
So we have, $DX=B$
We know $D{{D}^{-1}}=I$
where $I$ is the identity matrix.
So $X={{D}^{-1}}B$
So let us check if${{D}^{-1}}$it exists or not.
So\[\left| D \right|=4(12-12)-3(6-36)+2(4-24)=50\ne 0\]
Therefore we can see above that $D$ is a nonsingular matrix and the inverse of $D$ exists.
So now we have to find an adjoint $D$.
Let $A=\left[ {{a}_{ij}} \right]$ be a square matrix of order $n$ . The adjoint of a matrix $A$ is the transpose of the cofactor matrix of $A$ . It is denoted by adj $A$ .
Given a square matrix A, the transpose of the matrix of the cofactor of A is called adjoint of A and is denoted by adj A. An adjoint matrix is also called an adjugate matrix.
In other words, we can say that matrix A is another matrix formed by replacing each element of the current matrix by its corresponding cofactor and then taking the transpose of the new matrix formed.
So now we have to find the inverse of $D$.
$\begin{align}
& {{D}_{11}}={{(-1)}^{1+1}}\left| \begin{matrix}
4 & 6 \\
2 & 3 \\
\end{matrix} \right|=12-12=0 \\
& {{D}_{12}}={{(-1)}^{1+2}}\left| \begin{matrix}
2 & 6 \\
6 & 3 \\
\end{matrix} \right|=-(6-36)=30 \\
& {{D}_{13}}={{(-1)}^{1+3}}\left| \begin{matrix}
2 & 4 \\
6 & 2 \\
\end{matrix} \right|=4-24=-20 \\
& {{D}_{21}}={{(-1)}^{2+1}}\left| \begin{matrix}
3 & 2 \\
2 & 3 \\
\end{matrix} \right|=-(9-4)=-5 \\
& {{D}_{22}}={{(-1)}^{2+2}}\left| \begin{matrix}
4 & 2 \\
6 & 3 \\
\end{matrix} \right|=12-12=0 \\
& {{D}_{23}}={{(-1)}^{2+3}}\left| \begin{matrix}
4 & 3 \\
6 & 2 \\
\end{matrix} \right|=-(8-18)=10 \\
& {{D}_{31}}={{(-1)}^{3+1}}\left| \begin{matrix}
3 & 2 \\
4 & 6 \\
\end{matrix} \right|=18-8=10 \\
& {{D}_{32}}={{(-1)}^{3+2}}\left| \begin{matrix}
4 & 2 \\
2 & 6 \\
\end{matrix} \right|=-(24-4)=-20 \\
& {{D}_{33}}={{(-1)}^{3+3}}\left| \begin{matrix}
4 & 3 \\
2 & 4 \\
\end{matrix} \right|=16-6=10 \\
& \\
\end{align}$
So the matrix of cofactors of $D$$=\left[ \begin{matrix}
0 & 30 & -20 \\
-5 & 0 & 10 \\
10 & -20 & 10 \\
\end{matrix} \right]$.
So now adj $D$ becomes,
adj $D$$=\left[ \begin{matrix}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10 \\
\end{matrix} \right]$
So we know ${{D}^{-1}}=\dfrac{1}{\left| D \right|}adjD$.
So now, ${{D}^{-1}}=\dfrac{1}{50}\left[ \begin{matrix}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10 \\
\end{matrix} \right]$.
So now we have got ${{D}^{-1}}$, so now we know $X={{D}^{-1}}B$.
So now we get,
\[\begin{align}
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{50}\left[ \begin{matrix}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10 \\
\end{matrix} \right]\left[ \begin{matrix}
60 \\
90 \\
70 \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{50}\left[ \begin{matrix}
0-5\times 90+10\times 70 \\
30\times 60+0-20\times 70 \\
-20\times 60+10\times 90+10\times 70 \\
\end{matrix} \right] \\
& \\
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{50}\left[ \begin{matrix}
250 \\
400 \\
400 \\
\end{matrix} \right] \\
\end{align}\]
So simplifying the above equation by dividing each element inside the matrix by $50$, we get,
\[\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
5 \\
8 \\
8 \\
\end{matrix} \right]\]
So we have got the cost of each item per kg of $x$, $y$ and $z$ as $5$ rupees,$8$ rupees, and$8$ rupees respectively.
Note: Read the question carefully. You should know how to convert a matrix into its inverse. You should be familiar with the inverse ${{D}^{-1}}=\dfrac{1}{\left| D \right|} adjD$. Most of the mistakes occur while finding adjoint. The more mistakes are seen in finding out the cofactor that is of the minus sign so take care of it.
Now we can see in question.
Let the cost of each item per kg be $x$,$y$ and $z$.
So for first, we get the equation as,
$4x+3y+2z=60$……….. (1)
So for a second, we get the equation as,
$2x+4y+6z=90$………… (2)
So for the third, we get the equation as,
$6x+2y+3z=70$ ………… (3)
So now equation (1), (2) and (3) can be written in matrix form that is,
$DX=B$
Where $D=\left[ \begin{matrix}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3 \\
\end{matrix} \right]$,
$X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]$and\[B=\left[ \begin{matrix}
60 \\
90 \\
70 \\
\end{matrix} \right]\],
So now to find the cost of each item per kg, we have to find $x$, $y$ and $z$.
So we have to find a matrix $X$.
So we have, $DX=B$
We know $D{{D}^{-1}}=I$
where $I$ is the identity matrix.
So $X={{D}^{-1}}B$
So let us check if${{D}^{-1}}$it exists or not.
So\[\left| D \right|=4(12-12)-3(6-36)+2(4-24)=50\ne 0\]
Therefore we can see above that $D$ is a nonsingular matrix and the inverse of $D$ exists.
So now we have to find an adjoint $D$.
Let $A=\left[ {{a}_{ij}} \right]$ be a square matrix of order $n$ . The adjoint of a matrix $A$ is the transpose of the cofactor matrix of $A$ . It is denoted by adj $A$ .
Given a square matrix A, the transpose of the matrix of the cofactor of A is called adjoint of A and is denoted by adj A. An adjoint matrix is also called an adjugate matrix.
In other words, we can say that matrix A is another matrix formed by replacing each element of the current matrix by its corresponding cofactor and then taking the transpose of the new matrix formed.
So now we have to find the inverse of $D$.
$\begin{align}
& {{D}_{11}}={{(-1)}^{1+1}}\left| \begin{matrix}
4 & 6 \\
2 & 3 \\
\end{matrix} \right|=12-12=0 \\
& {{D}_{12}}={{(-1)}^{1+2}}\left| \begin{matrix}
2 & 6 \\
6 & 3 \\
\end{matrix} \right|=-(6-36)=30 \\
& {{D}_{13}}={{(-1)}^{1+3}}\left| \begin{matrix}
2 & 4 \\
6 & 2 \\
\end{matrix} \right|=4-24=-20 \\
& {{D}_{21}}={{(-1)}^{2+1}}\left| \begin{matrix}
3 & 2 \\
2 & 3 \\
\end{matrix} \right|=-(9-4)=-5 \\
& {{D}_{22}}={{(-1)}^{2+2}}\left| \begin{matrix}
4 & 2 \\
6 & 3 \\
\end{matrix} \right|=12-12=0 \\
& {{D}_{23}}={{(-1)}^{2+3}}\left| \begin{matrix}
4 & 3 \\
6 & 2 \\
\end{matrix} \right|=-(8-18)=10 \\
& {{D}_{31}}={{(-1)}^{3+1}}\left| \begin{matrix}
3 & 2 \\
4 & 6 \\
\end{matrix} \right|=18-8=10 \\
& {{D}_{32}}={{(-1)}^{3+2}}\left| \begin{matrix}
4 & 2 \\
2 & 6 \\
\end{matrix} \right|=-(24-4)=-20 \\
& {{D}_{33}}={{(-1)}^{3+3}}\left| \begin{matrix}
4 & 3 \\
2 & 4 \\
\end{matrix} \right|=16-6=10 \\
& \\
\end{align}$
So the matrix of cofactors of $D$$=\left[ \begin{matrix}
0 & 30 & -20 \\
-5 & 0 & 10 \\
10 & -20 & 10 \\
\end{matrix} \right]$.
So now adj $D$ becomes,
adj $D$$=\left[ \begin{matrix}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10 \\
\end{matrix} \right]$
So we know ${{D}^{-1}}=\dfrac{1}{\left| D \right|}adjD$.
So now, ${{D}^{-1}}=\dfrac{1}{50}\left[ \begin{matrix}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10 \\
\end{matrix} \right]$.
So now we have got ${{D}^{-1}}$, so now we know $X={{D}^{-1}}B$.
So now we get,
\[\begin{align}
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{50}\left[ \begin{matrix}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10 \\
\end{matrix} \right]\left[ \begin{matrix}
60 \\
90 \\
70 \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{50}\left[ \begin{matrix}
0-5\times 90+10\times 70 \\
30\times 60+0-20\times 70 \\
-20\times 60+10\times 90+10\times 70 \\
\end{matrix} \right] \\
& \\
& \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{50}\left[ \begin{matrix}
250 \\
400 \\
400 \\
\end{matrix} \right] \\
\end{align}\]
So simplifying the above equation by dividing each element inside the matrix by $50$, we get,
\[\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
5 \\
8 \\
8 \\
\end{matrix} \right]\]
So we have got the cost of each item per kg of $x$, $y$ and $z$ as $5$ rupees,$8$ rupees, and$8$ rupees respectively.
Note: Read the question carefully. You should know how to convert a matrix into its inverse. You should be familiar with the inverse ${{D}^{-1}}=\dfrac{1}{\left| D \right|} adjD$. Most of the mistakes occur while finding adjoint. The more mistakes are seen in finding out the cofactor that is of the minus sign so take care of it.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE