
The curve described parametrically by $$x = {t^2} + t + 1,y = {t^2} - t + 1$$ represents
A) A pair of straight line
B) An eclipse
C) A parabola
D) A hyperbola
Answer
583.2k+ views
Hint: We have given two equations in the form of x and y, compare both equations and add and subtract it, after that compare both the equations, it will be similar to the parabola equation, we will get an answer.
Complete step-by-step answer:
We have, $$x = {t^2} + t + 1$$ .... (i)
and $$y = {t^2} - t + 1$$ .... (ii)
Now, $$x + y = 2(1 + {t^2})$$ .... (iii)
and $$x - y = 2t$$.... (iv)
Now, from Eqs. (iii) and (iv), we get
$$\eqalign{
& x + y = 2[1 + {\left( {\dfrac{{(x - y)}}{2}} \right)^2}] \cr
& \Rightarrow x + y = 2[\dfrac{{4 + {x^2} + {y^2} - 2xy}}{4}] \cr} $$
$$ \Rightarrow {x^2} + {y^2} - 2xy - 2x - 2y + 4 = 0\;{\text{ }}\;{\text{ }}\;$$ .... (v)
On comparing with, we get
$$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$
We get, $$a = 1,b = 1,c = 4,h = - 1,g = - 1,f = - 1$$
$$\vartriangle = abc + 2fgh - a{f^2} - b{g^2} - c{h^2}$$
Now,
$$\eqalign{
& \vartriangle = 1 \cdot 1 \cdot 4 + 2\left( { - 1} \right)\left( { - 1} \right)\left( { - 1} \right) - 1 \times {\left( { - 1} \right)^2} - 1 \times {\left( { - 1} \right)^2} - 4{\left( { - 1} \right)^2} \cr
& = 4 - 2 - 1 - 1 - 4 \cr
& = - 4 \cr} $$
, therefore, $$\vartriangle \ne 0$$
and $$ab - {h^2} = 1 \cdot 1 - {\left( 1 \right)^2} = 1 - 1 = 0$$
So, it is the equation of a parabola.
Note: We knew the equation of parabola, i.e. $$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$. After comparing both the given equations it gets similar to the parabola equation, so the answer is the equation is of parabola.
Complete step-by-step answer:
We have, $$x = {t^2} + t + 1$$ .... (i)
and $$y = {t^2} - t + 1$$ .... (ii)
Now, $$x + y = 2(1 + {t^2})$$ .... (iii)
and $$x - y = 2t$$.... (iv)
Now, from Eqs. (iii) and (iv), we get
$$\eqalign{
& x + y = 2[1 + {\left( {\dfrac{{(x - y)}}{2}} \right)^2}] \cr
& \Rightarrow x + y = 2[\dfrac{{4 + {x^2} + {y^2} - 2xy}}{4}] \cr} $$
$$ \Rightarrow {x^2} + {y^2} - 2xy - 2x - 2y + 4 = 0\;{\text{ }}\;{\text{ }}\;$$ .... (v)
On comparing with, we get
$$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$
We get, $$a = 1,b = 1,c = 4,h = - 1,g = - 1,f = - 1$$
$$\vartriangle = abc + 2fgh - a{f^2} - b{g^2} - c{h^2}$$
Now,
$$\eqalign{
& \vartriangle = 1 \cdot 1 \cdot 4 + 2\left( { - 1} \right)\left( { - 1} \right)\left( { - 1} \right) - 1 \times {\left( { - 1} \right)^2} - 1 \times {\left( { - 1} \right)^2} - 4{\left( { - 1} \right)^2} \cr
& = 4 - 2 - 1 - 1 - 4 \cr
& = - 4 \cr} $$
, therefore, $$\vartriangle \ne 0$$
and $$ab - {h^2} = 1 \cdot 1 - {\left( 1 \right)^2} = 1 - 1 = 0$$
So, it is the equation of a parabola.
Note: We knew the equation of parabola, i.e. $$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$. After comparing both the given equations it gets similar to the parabola equation, so the answer is the equation is of parabola.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

