Answer
Verified
499.5k+ views
Hint: In this question L.H.S of the given equation is a square of real numbers, so the square of real number is always positive or non-negative so, R.H.S part of the given equation should be positive, so use this concept to get the solution of the question.
Given equation is
${y^2} = \left( {x - 1} \right){\left( {x - 2} \right)^2}$
We have to prove for what value of x the above function is not defined.
As we know that the square of any real number is non-negative.
So, above curve is not defined if R.H.S is negative
So, R.H.S of above curve is
$\left( {x - 1} \right){\left( {x - 2} \right)^2}$
$ \Rightarrow \left( {x - 1} \right){\left( {x - 2} \right)^2} < 0$………………. (1), (Condition of not defined)
As we see from above equation
${\left( {x - 2} \right)^2} \geqslant 0$ for any value of x.
i.e. ${\left( {x - 2} \right)^2} \geqslant 0{\text{ }}\forall \left( {x \in R} \right)$ , where R is a real number.
Therefore from equation (1)
$\left( {x - 1} \right) < 0$
$\therefore x < 1$
Therefore for x is less than 1 curve is not defined.
Say $x = 0.9$,
Therefore given equation converts
$
{y^2} = \left( {0.9 - 1} \right){\left( {0.9 - 2} \right)^2} = \left( { - 0.1} \right){\left( { - 1.1} \right)^2} = - 0.1\left( {1.21} \right) = - 0.121 \\
\Rightarrow y = \sqrt { - 0.121} \\
$
So, as we see, the square root of a negative number is not defined.
Hence option (D) is correct.
Note: Whenever we face such types of questions always remember the condition of square of any real number which is square of any real number is non negative so, find out for what values of x R.H.S part of given equation is negative as above which is the required answer for which the given function is not defined.
Given equation is
${y^2} = \left( {x - 1} \right){\left( {x - 2} \right)^2}$
We have to prove for what value of x the above function is not defined.
As we know that the square of any real number is non-negative.
So, above curve is not defined if R.H.S is negative
So, R.H.S of above curve is
$\left( {x - 1} \right){\left( {x - 2} \right)^2}$
$ \Rightarrow \left( {x - 1} \right){\left( {x - 2} \right)^2} < 0$………………. (1), (Condition of not defined)
As we see from above equation
${\left( {x - 2} \right)^2} \geqslant 0$ for any value of x.
i.e. ${\left( {x - 2} \right)^2} \geqslant 0{\text{ }}\forall \left( {x \in R} \right)$ , where R is a real number.
Therefore from equation (1)
$\left( {x - 1} \right) < 0$
$\therefore x < 1$
Therefore for x is less than 1 curve is not defined.
Say $x = 0.9$,
Therefore given equation converts
$
{y^2} = \left( {0.9 - 1} \right){\left( {0.9 - 2} \right)^2} = \left( { - 0.1} \right){\left( { - 1.1} \right)^2} = - 0.1\left( {1.21} \right) = - 0.121 \\
\Rightarrow y = \sqrt { - 0.121} \\
$
So, as we see, the square root of a negative number is not defined.
Hence option (D) is correct.
Note: Whenever we face such types of questions always remember the condition of square of any real number which is square of any real number is non negative so, find out for what values of x R.H.S part of given equation is negative as above which is the required answer for which the given function is not defined.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE