Answer
Verified
470.4k+ views
Hint: Decomposition reaction is a type of reaction in which one compound breaks down in two or more compounds. A first-order reaction is a reaction in which reaction proceeds at a rate that depends linearly on only one reactant concentration.
Formula used: $k = \dfrac{{2.303}}{t}\log \dfrac{a}{{a - x}}$ where
k is rate constant
t is time taken
a is initial pressure
x is pressure of reactant decomposed till time t
Complete step by step answer:
For reaction $2{N_2}{O_5}\left( g \right)\xrightarrow{{}}4N{O_2}\left( g \right) + {O_2}\left( g \right)$
It can also be written as ${N_2}{O_5}\left( g \right)\xrightarrow{{}}2N{O_2}\left( g \right) + \dfrac{1}{2}{O_2}\left( g \right)$
Let initial pressure of ${N_2}{O_5}$ be $a$ before reaction and that of $N{O_2}$ and ${O_2}$ be $0$
After time t let say $x$ amount of pressure is decomposed in reaction and by the above reaction we can say that
Pressure of $N{O_2}$ at time t is$ = 2x$
Pressure of ${O_2}$ at time t is\[ = \dfrac{x}{2}\]
Pressure of ${N_2}{O_5}$ at time t is$ = a - x$
After complete dissociation pressure will be as following
Pressure of $N{O_2}$ after complete dissociation is$ = 2a$
Pressure of ${O_2}$ after complete dissociation is$ = \dfrac{a}{2}$
Pressure of ${N_2}{O_5}$ after complete dissociation is$ = 0$
Total number of moles at time t would be $a - x + 2x + \dfrac{x}{2} = a + \dfrac{3}{2}x$
Total number of moles after complete dissociation would be $2a + \dfrac{a}{2} + 0 = \dfrac{5}{2}a$
$\dfrac{5}{2}a \propto 584.5mm$
$a + \dfrac{3}{2}x \propto 284.5mm$
Solving these equations we get $a \propto 233.8mm$ and $x \propto 33.8mm$
Using formula
$k = \dfrac{{2.303}}{t}\log \dfrac{a}{{a - x}} = \dfrac{{2.303}}{{30}}\log \dfrac{{233.8}}{{233.8 - 33.8}}$
$ = 5.21 \times {10^{ - 3}}{\min ^{ - 1}}$
So, our answer to this question is option B that is $5.12 \times {10^{ - 3}}{\min ^{ - 1}}$.
Note:
Concentration time equation of first order reaction is $\ln \left[ A \right] = \ln \left[ {{A_ \circ }} \right] - kt$ and half life of first order reaction is given when $A$ becomes ${A_ \circ }$ that is reaction is half completed or reactants are half used/decomposed. ${t_{\dfrac{1}{2}}} = \dfrac{{\ln 2}}{k}$ .
Formula used: $k = \dfrac{{2.303}}{t}\log \dfrac{a}{{a - x}}$ where
k is rate constant
t is time taken
a is initial pressure
x is pressure of reactant decomposed till time t
Complete step by step answer:
For reaction $2{N_2}{O_5}\left( g \right)\xrightarrow{{}}4N{O_2}\left( g \right) + {O_2}\left( g \right)$
It can also be written as ${N_2}{O_5}\left( g \right)\xrightarrow{{}}2N{O_2}\left( g \right) + \dfrac{1}{2}{O_2}\left( g \right)$
Let initial pressure of ${N_2}{O_5}$ be $a$ before reaction and that of $N{O_2}$ and ${O_2}$ be $0$
After time t let say $x$ amount of pressure is decomposed in reaction and by the above reaction we can say that
Pressure of $N{O_2}$ at time t is$ = 2x$
Pressure of ${O_2}$ at time t is\[ = \dfrac{x}{2}\]
Pressure of ${N_2}{O_5}$ at time t is$ = a - x$
After complete dissociation pressure will be as following
Pressure of $N{O_2}$ after complete dissociation is$ = 2a$
Pressure of ${O_2}$ after complete dissociation is$ = \dfrac{a}{2}$
Pressure of ${N_2}{O_5}$ after complete dissociation is$ = 0$
Total number of moles at time t would be $a - x + 2x + \dfrac{x}{2} = a + \dfrac{3}{2}x$
Total number of moles after complete dissociation would be $2a + \dfrac{a}{2} + 0 = \dfrac{5}{2}a$
$\dfrac{5}{2}a \propto 584.5mm$
$a + \dfrac{3}{2}x \propto 284.5mm$
Solving these equations we get $a \propto 233.8mm$ and $x \propto 33.8mm$
Using formula
$k = \dfrac{{2.303}}{t}\log \dfrac{a}{{a - x}} = \dfrac{{2.303}}{{30}}\log \dfrac{{233.8}}{{233.8 - 33.8}}$
$ = 5.21 \times {10^{ - 3}}{\min ^{ - 1}}$
So, our answer to this question is option B that is $5.12 \times {10^{ - 3}}{\min ^{ - 1}}$.
Note:
Concentration time equation of first order reaction is $\ln \left[ A \right] = \ln \left[ {{A_ \circ }} \right] - kt$ and half life of first order reaction is given when $A$ becomes ${A_ \circ }$ that is reaction is half completed or reactants are half used/decomposed. ${t_{\dfrac{1}{2}}} = \dfrac{{\ln 2}}{k}$ .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE