Answer
Verified
450.9k+ views
Hint:Consider the definitions of the heat capacity and specific heat capacity to derive a relation between them. Apply the given condition and find the ratio of specific heats of A and B.
Complete step by step answer:
Heat capacity: It is a measurable quantity that gives the amount of heat required to raise the temperature of a body by one degree Celsius. Now for heat capacity, heat supplied to a body/absorbed by a body is proportional to the corresponding change in temperature.
$
\Delta Q \propto \Delta T \\
\Rightarrow\Delta Q = C\Delta T \\
\Rightarrow C = \dfrac{{\Delta Q}}{{\Delta T}} \\
$
Here, $C$ is heat capacity.
Specific heat capacity: It is a measurable quantity that gives the amount of heat required to raise the temperature of the body of unit mass by one degree Celsius. For Specific heat capacity, heat supplied to a body/absorbed by a body is proportional to mass of the body and corresponding change in temperature.
$
\Rightarrow \Delta Q \propto m \\
\Rightarrow\Delta Q \propto \Delta T \\
\Rightarrow \Delta Q \propto m\Delta T \\
\Rightarrow \Delta Q = ms\Delta T \\
$
Here, $s$ is the specific heat.
Now, if you compare, the ratio of heat absorbed by the body and corresponding change in temperature is $\dfrac{{\Delta Q}}{{\Delta T}}$ which should be the same since they represent the same quantity. Hence you can equate both the values of the ratio obtained.
$\therefore C = ms$
Now, given that the heat capacity is the same for both the materials.
${m_A}{s_A} = {m_B}{s_B}$ and we have$m = \rho V$
$
\Rightarrow {\rho _A}{V_A}{s_A} = {\rho _B}{V_B}{s_B} \\
\Rightarrow\dfrac{{{s_A}}}{{{s_B}}} = \dfrac{{{\rho _B}{V_B}}}{{{\rho _A}{V_A}}} \\
\Rightarrow\dfrac{{{s_A}}}{{{s_B}}} = \dfrac{{2000 \times 12}}{{1500 \times 8}} \\
\therefore\dfrac{{{s_A}}}{{{s_B}}} = 2 \\
$
Therefore, the ratio of specific heats of A and B will be $2:1$.Hence, option (D) is correct.
Note: Always keep in mind the difference between heat capacity and specific heat capacity. Although in definition of both the quantities we used the unit of temperature as Celsius, in equation we use the unit of temperature as Kelvin.
Complete step by step answer:
Heat capacity: It is a measurable quantity that gives the amount of heat required to raise the temperature of a body by one degree Celsius. Now for heat capacity, heat supplied to a body/absorbed by a body is proportional to the corresponding change in temperature.
$
\Delta Q \propto \Delta T \\
\Rightarrow\Delta Q = C\Delta T \\
\Rightarrow C = \dfrac{{\Delta Q}}{{\Delta T}} \\
$
Here, $C$ is heat capacity.
Specific heat capacity: It is a measurable quantity that gives the amount of heat required to raise the temperature of the body of unit mass by one degree Celsius. For Specific heat capacity, heat supplied to a body/absorbed by a body is proportional to mass of the body and corresponding change in temperature.
$
\Rightarrow \Delta Q \propto m \\
\Rightarrow\Delta Q \propto \Delta T \\
\Rightarrow \Delta Q \propto m\Delta T \\
\Rightarrow \Delta Q = ms\Delta T \\
$
Here, $s$ is the specific heat.
Now, if you compare, the ratio of heat absorbed by the body and corresponding change in temperature is $\dfrac{{\Delta Q}}{{\Delta T}}$ which should be the same since they represent the same quantity. Hence you can equate both the values of the ratio obtained.
$\therefore C = ms$
Now, given that the heat capacity is the same for both the materials.
${m_A}{s_A} = {m_B}{s_B}$ and we have$m = \rho V$
$
\Rightarrow {\rho _A}{V_A}{s_A} = {\rho _B}{V_B}{s_B} \\
\Rightarrow\dfrac{{{s_A}}}{{{s_B}}} = \dfrac{{{\rho _B}{V_B}}}{{{\rho _A}{V_A}}} \\
\Rightarrow\dfrac{{{s_A}}}{{{s_B}}} = \dfrac{{2000 \times 12}}{{1500 \times 8}} \\
\therefore\dfrac{{{s_A}}}{{{s_B}}} = 2 \\
$
Therefore, the ratio of specific heats of A and B will be $2:1$.Hence, option (D) is correct.
Note: Always keep in mind the difference between heat capacity and specific heat capacity. Although in definition of both the quantities we used the unit of temperature as Celsius, in equation we use the unit of temperature as Kelvin.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE