![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The density of mercury is 13.6 g/ cm$^{3}$. Estimate the b value. Atomic mass of Hg=200.
A.29.41 cm$^{3}$
B.58.82 cm$^{3}$
C.98.82 cm$^{3}$
D.None of these
Answer
487.8k+ views
Hint: The b value is related to the degree of diffusion. We are given with the density of mercury, and the molar mass of mercury. By applying the mole concept in the terms of volume as density is indirectly proportional to volume, the b value can be estimated.
Complete step by step answer:
Firstly, if we see the molar mass of mercury is 200 g / mole, and the density is 13.6 g/ cm$^{3}$.
Now, we know density is directly proportional to the molar mass, or mass. It can be written as D= $\dfrac{M}{V}$.
Thus, we can say that 1 mole of mercury will occupy a volume of 14.75 cm$^{3}$/mol. We calculated this by$\dfrac{200}{13.6}$. It represents the $\dfrac{M}{D}$.
We get the value of 14.75 cm$^{3}$/mol, it is the molar volume of mercury.
Now, if we talk about the b value, it is 4 times the molar volume. Thus the obtained value of molar volume can be multiplied by 4 to achieve the estimated value of b, i.e. 4 $\times$ 14.75 cm$^{3}$/mol = 58.87 cm$^{3}$/mol (approximately).
Therefore, the value of b is 58.87 cm$^{3}$ /mol. The correct option is B.
Note: Don’t get confused about how to solve the mole concept. Simply apply the formula of density in the terms of molar mass, and volume. From the density formula, the volume can be calculated, and the value of b is found by doing the 4 times of molar volume.
Complete step by step answer:
Firstly, if we see the molar mass of mercury is 200 g / mole, and the density is 13.6 g/ cm$^{3}$.
Now, we know density is directly proportional to the molar mass, or mass. It can be written as D= $\dfrac{M}{V}$.
Thus, we can say that 1 mole of mercury will occupy a volume of 14.75 cm$^{3}$/mol. We calculated this by$\dfrac{200}{13.6}$. It represents the $\dfrac{M}{D}$.
We get the value of 14.75 cm$^{3}$/mol, it is the molar volume of mercury.
Now, if we talk about the b value, it is 4 times the molar volume. Thus the obtained value of molar volume can be multiplied by 4 to achieve the estimated value of b, i.e. 4 $\times$ 14.75 cm$^{3}$/mol = 58.87 cm$^{3}$/mol (approximately).
Therefore, the value of b is 58.87 cm$^{3}$ /mol. The correct option is B.
Note: Don’t get confused about how to solve the mole concept. Simply apply the formula of density in the terms of molar mass, and volume. From the density formula, the volume can be calculated, and the value of b is found by doing the 4 times of molar volume.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)