Answer
Verified
496.8k+ views
Hint: Using the equation of difference between two numbers and one number is thrice the other number, determine the two numbers. Then, find the sum of these two numbers.
Complete step-by-step answer:
Let us assume the two numbers to be x and y with x greater than y.
It is given that the difference between the two numbers is 26. Hence, we have:
\[x - y = 26.........(1)\]
It is also given that one of the numbers is three times the other number. Since, x is the greatest number of the two, x is 3 times y. Hence, we have:
\[x = 3y............(2)\]
We have two equations with two unknowns x and y. Hence, we can solve them
Substitute equation (2) in equation (1) to get:
\[3y - y = 26\]
We know that 3y – y is 2y, hence, we have:
\[2y = 26\]
Taking 2 to the other side and dividing with 26, we get 13.
\[y = \dfrac{{26}}{2}\]
\[y = 13...........(3)\]
Using equation (3) in equation (2), we get the value of x.
\[x = 3(13)\]
We know the value of 3(13) is 39, hence, we have:
\[x = 39..........(4)\]
We now need to find the sum of these two numbers x and y.
From equation (3) and equation (4), we can add x and y to get the desired answer.
\[x + y = 39 + 13\]
\[x + y = 52\]
Hence, the value of the sum of the two numbers is 52.
Note: We can cross check your answer by substituting the value of the variables in the equations and see if they satisfy the expressions. This will help in understanding whether we got the correct answer or not.
Complete step-by-step answer:
Let us assume the two numbers to be x and y with x greater than y.
It is given that the difference between the two numbers is 26. Hence, we have:
\[x - y = 26.........(1)\]
It is also given that one of the numbers is three times the other number. Since, x is the greatest number of the two, x is 3 times y. Hence, we have:
\[x = 3y............(2)\]
We have two equations with two unknowns x and y. Hence, we can solve them
Substitute equation (2) in equation (1) to get:
\[3y - y = 26\]
We know that 3y – y is 2y, hence, we have:
\[2y = 26\]
Taking 2 to the other side and dividing with 26, we get 13.
\[y = \dfrac{{26}}{2}\]
\[y = 13...........(3)\]
Using equation (3) in equation (2), we get the value of x.
\[x = 3(13)\]
We know the value of 3(13) is 39, hence, we have:
\[x = 39..........(4)\]
We now need to find the sum of these two numbers x and y.
From equation (3) and equation (4), we can add x and y to get the desired answer.
\[x + y = 39 + 13\]
\[x + y = 52\]
Hence, the value of the sum of the two numbers is 52.
Note: We can cross check your answer by substituting the value of the variables in the equations and see if they satisfy the expressions. This will help in understanding whether we got the correct answer or not.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE