Answer
Verified
441.9k+ views
Hint: We start solving the problem by assigning variables for the larger and smaller numbers. We then use the condition of the difference of numbers to get a relation between them. We then use the condition difference between the squares and we substitute the relation obtained before and make subsequent calculations to get the value of the larger number.
Complete step by step answer:
According to the problem, we have given that the difference between two numbers is 5 and the difference between their squares is 65. We need to find the value of the greater number.
Let us assume the greatest number be y and smallest number be x.
We have the difference between numbers as 5. So, we get $y-x=5$.
$x=y-5$ ---(1).
According to the problem, the difference between the squares of these numbers is 65.
${{y}^{2}}-{{x}^{2}}=65$.
From equation (1), we get
${{y}^{2}}-{{\left( y-5 \right)}^{2}}=65$.
${{y}^{2}}-\left( {{y}^{2}}-10y+25 \right)=65$.
${{y}^{2}}-{{y}^{2}}+10y-25=65$.
$10y=65+25$.
$10y=90$.
$y=\dfrac{90}{10}$.
$y=9$.
We have found the value of the greatest number as 9.
∴ The value of the greatest number is 9.
So, the correct answer is “Option a”.
Note: We can also solve the problem by finding the value of the smaller number first and then using it to find the value of the larger number from the first relation obtained. Whenever we get this type of problem, it is better to start solving by assigning the variables and getting the relations between them to find the required values.
Complete step by step answer:
According to the problem, we have given that the difference between two numbers is 5 and the difference between their squares is 65. We need to find the value of the greater number.
Let us assume the greatest number be y and smallest number be x.
We have the difference between numbers as 5. So, we get $y-x=5$.
$x=y-5$ ---(1).
According to the problem, the difference between the squares of these numbers is 65.
${{y}^{2}}-{{x}^{2}}=65$.
From equation (1), we get
${{y}^{2}}-{{\left( y-5 \right)}^{2}}=65$.
${{y}^{2}}-\left( {{y}^{2}}-10y+25 \right)=65$.
${{y}^{2}}-{{y}^{2}}+10y-25=65$.
$10y=65+25$.
$10y=90$.
$y=\dfrac{90}{10}$.
$y=9$.
We have found the value of the greatest number as 9.
∴ The value of the greatest number is 9.
So, the correct answer is “Option a”.
Note: We can also solve the problem by finding the value of the smaller number first and then using it to find the value of the larger number from the first relation obtained. Whenever we get this type of problem, it is better to start solving by assigning the variables and getting the relations between them to find the required values.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE