Answer
Verified
468k+ views
Hint: To write dimensional formula for any quantity we need formula for that. Then we write formulas in basic terms like mass , time, length etc.
We can define coefficient of viscosity with following formula as below:
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Where \[\eta \] is coefficient of viscosity.
Complete step-by-step answer:
We generally define coefficient of viscosity as resistance which a fluid can exerts against a flow caused by applied force.
Formula of coefficient of viscosity is
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Now we can write dimensional formulas for each quantity.
Dimensional formula for force is $\left[ ML{{T}^{-2}} \right]$ because $F=ma$
Dimensional formula for distance is $\left[ L \right]$
Dimensional formula for the area of the layer is $\left[ {{L}^{2}} \right]$ because the area is generally defined as a centimeter square.
Dimensional formula for velocity is $\left[ L{{T}^{-1}} \right]$ because velocity is defined as ratio of distance and time.
Now we can find dimensional formula for coefficient of viscosity is
\[\Rightarrow \eta =\dfrac{\left[ ML{{T}^{-2}} \right]\,\times \,\left[ L \right]}{\left[ {{L}^{2}} \right]\times \,\left[ L{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\dfrac{\left[ M{{L}^{2}}{{T}^{-2}} \right]\,}{\,\left[ {{L}^{3}}{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\left[ M{{L}^{2-3}}{{T}^{-2+1}} \right]\]
\[\Rightarrow \eta =\left[ M{{L}^{-1}}{{T}^{-1}} \right]\]
Hence option B is correct.
Note: To simplify dimensional formulas we can apply multiplication and division properties of exponent.
According to the multiplication property of exponent if we have exponent terms of same base in multiplication then we can add their exponent. We can write it as below:
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
According to the division property of exponent if we have exponent terms of the same base in division then we can subtract their exponent. We can write it as below:
${{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}$
We can define coefficient of viscosity with following formula as below:
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Where \[\eta \] is coefficient of viscosity.
Complete step-by-step answer:
We generally define coefficient of viscosity as resistance which a fluid can exerts against a flow caused by applied force.
Formula of coefficient of viscosity is
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Now we can write dimensional formulas for each quantity.
Dimensional formula for force is $\left[ ML{{T}^{-2}} \right]$ because $F=ma$
Dimensional formula for distance is $\left[ L \right]$
Dimensional formula for the area of the layer is $\left[ {{L}^{2}} \right]$ because the area is generally defined as a centimeter square.
Dimensional formula for velocity is $\left[ L{{T}^{-1}} \right]$ because velocity is defined as ratio of distance and time.
Now we can find dimensional formula for coefficient of viscosity is
\[\Rightarrow \eta =\dfrac{\left[ ML{{T}^{-2}} \right]\,\times \,\left[ L \right]}{\left[ {{L}^{2}} \right]\times \,\left[ L{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\dfrac{\left[ M{{L}^{2}}{{T}^{-2}} \right]\,}{\,\left[ {{L}^{3}}{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\left[ M{{L}^{2-3}}{{T}^{-2+1}} \right]\]
\[\Rightarrow \eta =\left[ M{{L}^{-1}}{{T}^{-1}} \right]\]
Hence option B is correct.
Note: To simplify dimensional formulas we can apply multiplication and division properties of exponent.
According to the multiplication property of exponent if we have exponent terms of same base in multiplication then we can add their exponent. We can write it as below:
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
According to the division property of exponent if we have exponent terms of the same base in division then we can subtract their exponent. We can write it as below:
${{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths