
The dimensional formula of \[\dfrac{1}{2}{\mu _o}{H^2}\] (\[{\mu _o}\]-Permeability of free space and \[H\]-magnetic field intensity) is:
A. \[{\text{ML}}{{\text{T}}^{{\text{ - 1}}}}\]
B. \[{\text{M}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 2}}}}\]
C. \[{\text{M}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}\]
D. \[{\text{M}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 1}}}}\]
Answer
551.7k+ views
Hint:We are asked to find the dimensional formula of a given quantity. To find the dimensional formula of the quantity, first find the dimensions of each term of the quantity. Then combine them to find the dimensional formula of the whole quantity.
Complete step by step answer:
Given the quantity, \[\dfrac{1}{2}{\mu _o}{H^2}\], where \[{\mu _o}\] is permeability of free space and \[H\] is magnetic field intensity.
Let \[A = \dfrac{1}{2}{\mu _o}{H^2}\] ………………....(i)
To find the dimension of the above quantity, we check the dimension of \[{\mu _o}\] and \[H\].The unit of \[{\mu _o}\] is,
\[\left[ {{\mu _o}} \right] = \dfrac{{\left[ {{\text{Newton}}} \right]}}{{\left[ {{\text{Ampere}}} \right]}} = \dfrac{{\left[ {\text{N}} \right]}}{{\left[ {\text{A}} \right]}}\] …………....(ii)
The dimension of Newton is \[\left[ {\text{N}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}} \right]\]and ampere is \[\left[ {\text{A}} \right] = \left[ {\text{I}} \right]\]
where \[{\text{M}}\] is the dimension of mass, \[{\text{L}}\] is the dimension of length,\[{\text{T}}\] is the dimension of time and \[{\text{I}}\] is dimension of current.
Putting the values of \[\left[ {\text{N}} \right]\] and \[\left[ {\text{A}} \right]\] in equation (i), we get
\[\left[ {{\mu _o}} \right] = \dfrac{{\left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}} \right]}}{{\left[ {\text{I}} \right]}}\]
\[ \Rightarrow \left[ {{\mu _o}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{{\text{ - 1}}}}} \right]\] ………………(iii)
The unit of \[H\] is,
\[\left[ {\text{H}} \right] = \dfrac{{\left[ {{\text{Ampere}}} \right]}}{{\left[ {{\text{Metre}}} \right]}}\]
Now putting the dimension of ampere and metre we get,
\[\left[ {\text{H}} \right] = \dfrac{{\left[ {\text{I}} \right]}}{{\left[ {\text{L}} \right]}} = \left[ {{\text{I}}{{\text{L}}^{{\text{ - 1}}}}} \right]\] ……………....(iv)
Putting the values of dimension from equations (iii) and (iv) in equation (i) we get
\[\left[ A \right] = \left[ {\dfrac{1}{2}{\mu _o}{H^2}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{ - 1}}} \right]{\left[ {{\text{I}}{{\text{L}}^{{\text{ - 1}}}}} \right]^2}\]
\[ \Rightarrow \left[ A \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{ - 1}}{{\text{I}}^2}{{\text{L}}^{{\text{ - 2}}}}} \right]\]
\[ \therefore \left[ A \right] = \left[ {{\text{M}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}} \right]\]
Therefore the dimension of \[\dfrac{1}{2}{\mu _o}{H^2}\] is \[{\text{M}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}\].
Hence, the correct answer is option C.
Note: Whenever it is given to find out the dimension of a quantity, then first find the dimension of each term in the given quantity and combine them to find the dimension of the quantity. To find dimension of a quantity, we use dimensional analysis and see their dependency on seven fundamental units which are mass [M], length [L], time [T], electric current [I], thermodynamic temperature [K], luminous intensity [cd] and amount of substance [mol].
Complete step by step answer:
Given the quantity, \[\dfrac{1}{2}{\mu _o}{H^2}\], where \[{\mu _o}\] is permeability of free space and \[H\] is magnetic field intensity.
Let \[A = \dfrac{1}{2}{\mu _o}{H^2}\] ………………....(i)
To find the dimension of the above quantity, we check the dimension of \[{\mu _o}\] and \[H\].The unit of \[{\mu _o}\] is,
\[\left[ {{\mu _o}} \right] = \dfrac{{\left[ {{\text{Newton}}} \right]}}{{\left[ {{\text{Ampere}}} \right]}} = \dfrac{{\left[ {\text{N}} \right]}}{{\left[ {\text{A}} \right]}}\] …………....(ii)
The dimension of Newton is \[\left[ {\text{N}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}} \right]\]and ampere is \[\left[ {\text{A}} \right] = \left[ {\text{I}} \right]\]
where \[{\text{M}}\] is the dimension of mass, \[{\text{L}}\] is the dimension of length,\[{\text{T}}\] is the dimension of time and \[{\text{I}}\] is dimension of current.
Putting the values of \[\left[ {\text{N}} \right]\] and \[\left[ {\text{A}} \right]\] in equation (i), we get
\[\left[ {{\mu _o}} \right] = \dfrac{{\left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}} \right]}}{{\left[ {\text{I}} \right]}}\]
\[ \Rightarrow \left[ {{\mu _o}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{{\text{ - 1}}}}} \right]\] ………………(iii)
The unit of \[H\] is,
\[\left[ {\text{H}} \right] = \dfrac{{\left[ {{\text{Ampere}}} \right]}}{{\left[ {{\text{Metre}}} \right]}}\]
Now putting the dimension of ampere and metre we get,
\[\left[ {\text{H}} \right] = \dfrac{{\left[ {\text{I}} \right]}}{{\left[ {\text{L}} \right]}} = \left[ {{\text{I}}{{\text{L}}^{{\text{ - 1}}}}} \right]\] ……………....(iv)
Putting the values of dimension from equations (iii) and (iv) in equation (i) we get
\[\left[ A \right] = \left[ {\dfrac{1}{2}{\mu _o}{H^2}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{ - 1}}} \right]{\left[ {{\text{I}}{{\text{L}}^{{\text{ - 1}}}}} \right]^2}\]
\[ \Rightarrow \left[ A \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{ - 1}}{{\text{I}}^2}{{\text{L}}^{{\text{ - 2}}}}} \right]\]
\[ \therefore \left[ A \right] = \left[ {{\text{M}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}} \right]\]
Therefore the dimension of \[\dfrac{1}{2}{\mu _o}{H^2}\] is \[{\text{M}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}\].
Hence, the correct answer is option C.
Note: Whenever it is given to find out the dimension of a quantity, then first find the dimension of each term in the given quantity and combine them to find the dimension of the quantity. To find dimension of a quantity, we use dimensional analysis and see their dependency on seven fundamental units which are mass [M], length [L], time [T], electric current [I], thermodynamic temperature [K], luminous intensity [cd] and amount of substance [mol].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

