Answer
Verified
477.9k+ views
Hint: Mobility is defined as the drift velocity of the particle per unit electric field present. So, the dimensional formula of mobility will be the dimensional formula of drift velocity divided by the dimensional formula of electric field. We know that the dimensional formula of a physical quantity is the expression of a physical quantity in terms of fundamental physical quantities.
Formula used:
\[\mu =\dfrac{{{v}_{d}}}{E}\]
Complete step by step answer:
Dimensional formula is the expression of a physical quantity in terms of fundamental physical quantities. Mass (M), Length (L), Time (T), Current (A) and temperature (K) are the fundamental quantities.
Mobility ($\mu$) is defined as the drift velocity ($v_d$) of the particle per unit electric field (E) present.
\[\mu =\dfrac{{{v}_{d}}}{E}\]
Clearly, we can see that the drift velocity is a type of velocity and it can have the same dimensional formula as that of velocity. So, the dimensional formula of drift velocity will be,
\[\left[ {{v}_{d}} \right]={{M}^{0}}{{L}^{1}}{{T}^{-1}}\]
Electric field at a point can be stated as the force per unit charge experienced by an infinitesimal positive test charge present at that point. That means, the dimensional formula of electric field will be,
\[\left[ E \right]=\dfrac{\left[ F \right]}{\left[ q \right]}=\dfrac{ML{{T}^{-2}}}{AT}={{M}^{1}}{{L}^{1}}{{T}^{-3}}{{A}^{-1}}\]
The dimensional formula of mobility is the dimensional formula of drift velocity divided by the dimensional formula of electric field. So,
\[\left[ \mu \right]=\dfrac{\left[ {{v}_{d}} \right]}{\left[ E \right]}=\dfrac{{{M}^{0}}{{L}^{1}}{{T}^{-1}}}{{{M}^{1}}{{L}^{1}}{{T}^{-3}}{{A}^{-1}}}={{M}^{-1}}{{L}^{0}}{{T}^{2}}{{A}^{1}}\]
Thus, we can see that option D is the correct answer.
Note: Students usually memorize the dimensional formulas. But, in my opinion, it is not a right practice. It is good to understand the physical quantities and relate them. Thus, these big formulas will become easier to us. It is the best and shortest way in practice. Dimensional analysis will sometimes help us to eliminate some wrong options. So, it is a good thing to understand this.
Formula used:
\[\mu =\dfrac{{{v}_{d}}}{E}\]
Complete step by step answer:
Dimensional formula is the expression of a physical quantity in terms of fundamental physical quantities. Mass (M), Length (L), Time (T), Current (A) and temperature (K) are the fundamental quantities.
Mobility ($\mu$) is defined as the drift velocity ($v_d$) of the particle per unit electric field (E) present.
\[\mu =\dfrac{{{v}_{d}}}{E}\]
Clearly, we can see that the drift velocity is a type of velocity and it can have the same dimensional formula as that of velocity. So, the dimensional formula of drift velocity will be,
\[\left[ {{v}_{d}} \right]={{M}^{0}}{{L}^{1}}{{T}^{-1}}\]
Electric field at a point can be stated as the force per unit charge experienced by an infinitesimal positive test charge present at that point. That means, the dimensional formula of electric field will be,
\[\left[ E \right]=\dfrac{\left[ F \right]}{\left[ q \right]}=\dfrac{ML{{T}^{-2}}}{AT}={{M}^{1}}{{L}^{1}}{{T}^{-3}}{{A}^{-1}}\]
The dimensional formula of mobility is the dimensional formula of drift velocity divided by the dimensional formula of electric field. So,
\[\left[ \mu \right]=\dfrac{\left[ {{v}_{d}} \right]}{\left[ E \right]}=\dfrac{{{M}^{0}}{{L}^{1}}{{T}^{-1}}}{{{M}^{1}}{{L}^{1}}{{T}^{-3}}{{A}^{-1}}}={{M}^{-1}}{{L}^{0}}{{T}^{2}}{{A}^{1}}\]
Thus, we can see that option D is the correct answer.
Note: Students usually memorize the dimensional formulas. But, in my opinion, it is not a right practice. It is good to understand the physical quantities and relate them. Thus, these big formulas will become easier to us. It is the best and shortest way in practice. Dimensional analysis will sometimes help us to eliminate some wrong options. So, it is a good thing to understand this.
Recently Updated Pages
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
What happens to the gravitational force between two class 11 physics NEET
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE