Answer
Verified
461.1k+ views
Hint: We can find the dimensional formula of any constant from a known universal equation. The equation should not have other unknown constants. To derive the dimensional formula of Planck’s constant we can use the energy equation for photon’s energy.
Formula Used:
Energy of photon is given by,
$E=h\nu $
Where,
$h$ is Planck’s constant
$\nu $ is the frequency of light.
Complete answer:
Planck’s constant is one of the most fundamental constants in the domain of quantum mechanics.
So, the dimensional analysis of the Planck’s constant is of utmost interest.
We know that the energy of a photon is given by,
$E=h\nu $
$\Rightarrow h=\dfrac{E}{\nu }$
Where,
$h$ is Planck’s constant
$\nu $ is the frequency of light
So, we can write,
$\left[ h \right]=\dfrac{\left[ E \right]}{\left[ \nu \right]}$.......................(1)
If we can find the dimensions of energy (E) and frequency (v), then we can find the dimension of Planck’s constant.
Dimensional analysis of basic quantities can be found using the definition.
Energy is given by,
$E=Fs$
Where,
F is the force on an object
s is the distance travelled by an object due to the force
So, we can write,
$\left[ E \right]=\left[ F \right]\left[ s \right]$........................(2)
Force is also given by,
$F=ma$
Hence, the dimension of force is,
$\left[ F \right]=\left[ m \right]\left[ a \right]$
$\Rightarrow \left[ F \right]=ML{{T}^{-2}}$
So, we can put the dimension of force in equation (2).
We have,
$\left[ E \right]=ML{{T}^{-2}}\times L$
$\Rightarrow \left[ E \right]=M{{L}^{2}}{{T}^{-2}}$
Now, let's find the dimension of frequency.
Frequency of a wave is given by the inverse of the time period.
Hence, we can write,
$\nu =\dfrac{1}{T}$
So, the dimension of frequency is,
$\left[ \nu \right]={{T}^{-1}}$
We can put the dimensions of energy and frequency in equation (1).
So, we have,
$\left[ h \right]=\dfrac{M{{L}^{2}}{{T}^{-2}}}{{{T}^{-1}}}=M{{L}^{2}}{{T}^{-1}}$
Hence, the dimension of Planck’s constant is:
$\left[ h \right]=\left[ M{{L}^{2}}{{T}^{-1}} \right]$
The correct option is: (A).
Note:
Dimensional analysis of a quantity can be done using any equation which does not contain more than one number of unknown quantities. For example, if there was an equation like the following:
$F=(ma)(kb)$
Where, you know the dimensions of only m and k, then we could not find the dimensions of a or b using this equation.
Formula Used:
Energy of photon is given by,
$E=h\nu $
Where,
$h$ is Planck’s constant
$\nu $ is the frequency of light.
Complete answer:
Planck’s constant is one of the most fundamental constants in the domain of quantum mechanics.
So, the dimensional analysis of the Planck’s constant is of utmost interest.
We know that the energy of a photon is given by,
$E=h\nu $
$\Rightarrow h=\dfrac{E}{\nu }$
Where,
$h$ is Planck’s constant
$\nu $ is the frequency of light
So, we can write,
$\left[ h \right]=\dfrac{\left[ E \right]}{\left[ \nu \right]}$.......................(1)
If we can find the dimensions of energy (E) and frequency (v), then we can find the dimension of Planck’s constant.
Dimensional analysis of basic quantities can be found using the definition.
Energy is given by,
$E=Fs$
Where,
F is the force on an object
s is the distance travelled by an object due to the force
So, we can write,
$\left[ E \right]=\left[ F \right]\left[ s \right]$........................(2)
Force is also given by,
$F=ma$
Hence, the dimension of force is,
$\left[ F \right]=\left[ m \right]\left[ a \right]$
$\Rightarrow \left[ F \right]=ML{{T}^{-2}}$
So, we can put the dimension of force in equation (2).
We have,
$\left[ E \right]=ML{{T}^{-2}}\times L$
$\Rightarrow \left[ E \right]=M{{L}^{2}}{{T}^{-2}}$
Now, let's find the dimension of frequency.
Frequency of a wave is given by the inverse of the time period.
Hence, we can write,
$\nu =\dfrac{1}{T}$
So, the dimension of frequency is,
$\left[ \nu \right]={{T}^{-1}}$
We can put the dimensions of energy and frequency in equation (1).
So, we have,
$\left[ h \right]=\dfrac{M{{L}^{2}}{{T}^{-2}}}{{{T}^{-1}}}=M{{L}^{2}}{{T}^{-1}}$
Hence, the dimension of Planck’s constant is:
$\left[ h \right]=\left[ M{{L}^{2}}{{T}^{-1}} \right]$
The correct option is: (A).
Note:
Dimensional analysis of a quantity can be done using any equation which does not contain more than one number of unknown quantities. For example, if there was an equation like the following:
$F=(ma)(kb)$
Where, you know the dimensions of only m and k, then we could not find the dimensions of a or b using this equation.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE