Answer
Verified
395.7k+ views
Hint: A displacement is a vector in geometry and mechanics whose length is the shortest distance between the original and final positions of a moving point $P$. It measures the distance and direction of net or absolute motion in a straight line from the point trajectory's initial location to its final position. The translation that maps the original position to the final position can be used to identify a displacement.
Complete step by step answer:
Here the given equation is,
\[{\rm{y}}({\rm{x}},{\rm{t}}) = 0.06\sin \dfrac{{2\pi {\rm{x}}}}{3}\cos 120\pi {\rm{t}}\]
A standing wave, also known as a stationary wave, is a wave that oscillates in time but does not travel in space due to its peak amplitude profile. The wave oscillations' peak amplitude is constant with time at any point in space, and the oscillations at different points in the wave are in phase.
The given equation describes a stationary wave since the terms containing $x$ and $t$ are independent of one another. When we compare the given equation to the standard form of the stationary wave equation, we get
\[y(x,t) = 2r\sin kx\cos \omega t\]
Substituting the values we get
\[{\rm{ }}k = \dfrac{{2\pi }}{\lambda } \\
\Rightarrow {\rm{ }}k= \dfrac{{2\pi }}{3}\]
\[\Rightarrow \lambda = 3\,m\]
Also \[\omega = 120\pi \]
\[\Rightarrow \nu = \dfrac{\omega }{{2\pi }} \\
\Rightarrow \nu= \dfrac{{120\pi }}{{2\pi }} \\
\Rightarrow \nu= 60\,Hz\]
We know that
\[v = \nu \times \lambda \\
\Rightarrow v= 60 \times 3 \\
\therefore v= 180\,m/s\]
Hence option B and C are correct.
Note: Michael Faraday was the first to note standing waves in 1831. Standing waves on the surface of a liquid in a vibrating container are detected by Faraday. Around 1860, Franz Melde invented the word "standing wave" and explained the effect of vibrating strings in his classic experiment.
Complete step by step answer:
Here the given equation is,
\[{\rm{y}}({\rm{x}},{\rm{t}}) = 0.06\sin \dfrac{{2\pi {\rm{x}}}}{3}\cos 120\pi {\rm{t}}\]
A standing wave, also known as a stationary wave, is a wave that oscillates in time but does not travel in space due to its peak amplitude profile. The wave oscillations' peak amplitude is constant with time at any point in space, and the oscillations at different points in the wave are in phase.
The given equation describes a stationary wave since the terms containing $x$ and $t$ are independent of one another. When we compare the given equation to the standard form of the stationary wave equation, we get
\[y(x,t) = 2r\sin kx\cos \omega t\]
Substituting the values we get
\[{\rm{ }}k = \dfrac{{2\pi }}{\lambda } \\
\Rightarrow {\rm{ }}k= \dfrac{{2\pi }}{3}\]
\[\Rightarrow \lambda = 3\,m\]
Also \[\omega = 120\pi \]
\[\Rightarrow \nu = \dfrac{\omega }{{2\pi }} \\
\Rightarrow \nu= \dfrac{{120\pi }}{{2\pi }} \\
\Rightarrow \nu= 60\,Hz\]
We know that
\[v = \nu \times \lambda \\
\Rightarrow v= 60 \times 3 \\
\therefore v= 180\,m/s\]
Hence option B and C are correct.
Note: Michael Faraday was the first to note standing waves in 1831. Standing waves on the surface of a liquid in a vibrating container are detected by Faraday. Around 1860, Franz Melde invented the word "standing wave" and explained the effect of vibrating strings in his classic experiment.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE