Answer
Verified
387.3k+ views
- Hint- In order to find the displacement of the particle first we will find the velocity by differentiating the given equation with respect to $t$ . In this way we will calculate the time, and by putting this time in the given equation we will get the displacement.
Complete step-by-step solution -
Given equation is $t - 3 = \sqrt x $ --- (1)
Let us convert our equation in simplest form, so after taking square to both the side we have,
$
\because t - 3 = \sqrt x \\
\Rightarrow {\left( {t - 3} \right)^2} = {\left( {\sqrt x } \right)^2} \\
$
Now let us simplify the term by using the algebraic formula for the square of sum of terms.
$
\Rightarrow {\left( {t - 3} \right)^2} = {\left( {\sqrt x } \right)^2} \\
\Rightarrow {t^2} + {3^2} - 2 \times 3 \times t = x{\text{ }}\left[ {\because {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2 \times a \times b} \right] \\
\Rightarrow {t^2} + 9 - 6t = x \\
\Rightarrow x = {t^2} - 6t + 9 \\
$
As we know that the velocity is the time rate of change of displacement.
$
\Rightarrow \dfrac{d}{{dt}}\left[ x \right] = \dfrac{d}{{dt}}\left[ {{t^2} - 6t + 9} \right] \\
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left[ {{t^2}} \right] + \dfrac{d}{{dt}}\left[ { - 6t} \right] + \dfrac{d}{{dt}}\left[ 9 \right] \\
\Rightarrow v = \dfrac{{dx}}{{dt}} = 2t + \left( { - 6} \right) + 0 \\
\Rightarrow v = 2t - 6 \\
$
Given the problem, we need to find out the displacement when the velocity is zero.
So let us equate the equation of velocity to zero to find the time $t$
$
\Rightarrow v = 2t - 6 = 0 \\
\Rightarrow 2t = 6 \\
\Rightarrow t = \dfrac{6}{2} \\
\Rightarrow t = 3\sec \\
$
Therefore, the value of time t is 3 sec.
Now we will substitute value of time in given equation (1), we obtain
$
\because t - 3 = \sqrt x \\
\Rightarrow \left( 3 \right) - 3 = \sqrt x {\text{ }}\left[ {\because {\text{ found the value of t = 3 sec}}} \right] \\
\Rightarrow 0 = \sqrt x \\
\Rightarrow {\left( 0 \right)^2} = {\left( {\sqrt x } \right)^2} \\
\Rightarrow x = 0 \\
$
Hence, the displacement of the particle is 0 when its velocity is zero.
Note- In order to solve such problems students must remember that by single differentiation of displacement equation with respect to time is velocity and double differentiation of displacement equation with respect to time is acceleration. A displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time.
Complete step-by-step solution -
Given equation is $t - 3 = \sqrt x $ --- (1)
Let us convert our equation in simplest form, so after taking square to both the side we have,
$
\because t - 3 = \sqrt x \\
\Rightarrow {\left( {t - 3} \right)^2} = {\left( {\sqrt x } \right)^2} \\
$
Now let us simplify the term by using the algebraic formula for the square of sum of terms.
$
\Rightarrow {\left( {t - 3} \right)^2} = {\left( {\sqrt x } \right)^2} \\
\Rightarrow {t^2} + {3^2} - 2 \times 3 \times t = x{\text{ }}\left[ {\because {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2 \times a \times b} \right] \\
\Rightarrow {t^2} + 9 - 6t = x \\
\Rightarrow x = {t^2} - 6t + 9 \\
$
As we know that the velocity is the time rate of change of displacement.
$
\Rightarrow \dfrac{d}{{dt}}\left[ x \right] = \dfrac{d}{{dt}}\left[ {{t^2} - 6t + 9} \right] \\
\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left[ {{t^2}} \right] + \dfrac{d}{{dt}}\left[ { - 6t} \right] + \dfrac{d}{{dt}}\left[ 9 \right] \\
\Rightarrow v = \dfrac{{dx}}{{dt}} = 2t + \left( { - 6} \right) + 0 \\
\Rightarrow v = 2t - 6 \\
$
Given the problem, we need to find out the displacement when the velocity is zero.
So let us equate the equation of velocity to zero to find the time $t$
$
\Rightarrow v = 2t - 6 = 0 \\
\Rightarrow 2t = 6 \\
\Rightarrow t = \dfrac{6}{2} \\
\Rightarrow t = 3\sec \\
$
Therefore, the value of time t is 3 sec.
Now we will substitute value of time in given equation (1), we obtain
$
\because t - 3 = \sqrt x \\
\Rightarrow \left( 3 \right) - 3 = \sqrt x {\text{ }}\left[ {\because {\text{ found the value of t = 3 sec}}} \right] \\
\Rightarrow 0 = \sqrt x \\
\Rightarrow {\left( 0 \right)^2} = {\left( {\sqrt x } \right)^2} \\
\Rightarrow x = 0 \\
$
Hence, the displacement of the particle is 0 when its velocity is zero.
Note- In order to solve such problems students must remember that by single differentiation of displacement equation with respect to time is velocity and double differentiation of displacement equation with respect to time is acceleration. A displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE