Answer
Verified
395.7k+ views
Hint: We know that ${{K}_{a}}$ is the acid dissociation constant and it is the equilibrium constant for the dissociation of acid. Whenever the compound has the tendency to readily lose its proton by dissociation, then it indicates that the compound is highly acidic.
Complete answer:
It is known that dissociation of acid represents the release of a proton from the given acid. Therefore, the strength of the acid is easily determined by the dissociation constant. The strength of an acid is directly proportional to the square root of their dissociation constants. The dissociation constants of two acids \[H{{A}_{1}}\] and \[H{{A}_{2}}\]are \[3.14\times {{10}^{-4}}\]and \[1.96\times {{10}^{-5}}\] respectively.
$\dfrac{Acid\text{ }Strength[H{{A}_{1}}]}{Acid\text{ }Strength[H{{A}_{2}}]}=\dfrac{\sqrt{K{{a}_{\left[ H{{A}_{1}} \right]}}}}{\sqrt{K{{a}_{\left[ H{{A}_{2}} \right]}}}}$
Substituting the values in above equation we get;
$\Rightarrow \dfrac{\sqrt{3.14\times {{10}^{-4}}}}{\sqrt{1.96\times {{10}^{-5}}}}$
On further solving we get;
$\Rightarrow \dfrac{4}{1}$
Thus, the relative strength of two acids is in the ratio of $4:1$.
Additional Information:
Similar to acid dissociation, the dissociation constant for the base which is the negative logarithm of the base dissociation constant. Higher the greater will be the basicity of the compound. Also, the lower the greater will be the basicity of the compound.
Note:
Remember that if one value of the dissociation constant is known, then other dissociation constants can be calculated. Ionic product of water is defined as the product of the molar concentration of hydroxyl ion and hydrogen ion concentration at constant temperature and its $p{{K}_{w}}$ is the sum of pH and pOH.
Complete answer:
It is known that dissociation of acid represents the release of a proton from the given acid. Therefore, the strength of the acid is easily determined by the dissociation constant. The strength of an acid is directly proportional to the square root of their dissociation constants. The dissociation constants of two acids \[H{{A}_{1}}\] and \[H{{A}_{2}}\]are \[3.14\times {{10}^{-4}}\]and \[1.96\times {{10}^{-5}}\] respectively.
$\dfrac{Acid\text{ }Strength[H{{A}_{1}}]}{Acid\text{ }Strength[H{{A}_{2}}]}=\dfrac{\sqrt{K{{a}_{\left[ H{{A}_{1}} \right]}}}}{\sqrt{K{{a}_{\left[ H{{A}_{2}} \right]}}}}$
Substituting the values in above equation we get;
$\Rightarrow \dfrac{\sqrt{3.14\times {{10}^{-4}}}}{\sqrt{1.96\times {{10}^{-5}}}}$
On further solving we get;
$\Rightarrow \dfrac{4}{1}$
Thus, the relative strength of two acids is in the ratio of $4:1$.
Additional Information:
Similar to acid dissociation, the dissociation constant for the base which is the negative logarithm of the base dissociation constant. Higher the greater will be the basicity of the compound. Also, the lower the greater will be the basicity of the compound.
Note:
Remember that if one value of the dissociation constant is known, then other dissociation constants can be calculated. Ionic product of water is defined as the product of the molar concentration of hydroxyl ion and hydrogen ion concentration at constant temperature and its $p{{K}_{w}}$ is the sum of pH and pOH.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE