
The distance between the tops of two trees 20m and 28m high is 17m. The horizontal distance between the two tree is
$(a)$ 11m
$(b)$ 31m
$(c)$ 15m
$(d)$ 9m
Answer
622.8k+ views
Hint - In this type of problem, they usually make right angled triangles and we can use the Pythagoras theorem to solve.
Given that
AB = 20m
AE = 17m
CE = 28m
$\because $ CE = AB + DE
$\therefore $ DE = 8m
With the given data, diagram can be drawn like this
Now we apply the Pythagoras theorem in the ADE triangle.
Then
${\text{A}}{{\text{E}}^2} = {\text{A}}{{\text{D}}^2} + {\text{D}}{{\text{E}}^2}$
${17^2} = {{\text{x}}^2} + {8^2}$
${{\text{x}}^2} = 289 - 64$
${{\text{x}}^2} = 225$
${\text{x = }} \pm {\text{15}}$
$\because $ distance never be negative then
X = 15m
Therefore, the horizontal distance between the two trees is 15m.
Note - In this problem, first let assume the variable for unknown and then apply the Pythagoras theorem and get the value of unknown which is the horizontal distance between the two trees.
Given that
AB = 20m
AE = 17m
CE = 28m
$\because $ CE = AB + DE
$\therefore $ DE = 8m
With the given data, diagram can be drawn like this
Now we apply the Pythagoras theorem in the ADE triangle.
Then
${\text{A}}{{\text{E}}^2} = {\text{A}}{{\text{D}}^2} + {\text{D}}{{\text{E}}^2}$
${17^2} = {{\text{x}}^2} + {8^2}$
${{\text{x}}^2} = 289 - 64$
${{\text{x}}^2} = 225$
${\text{x = }} \pm {\text{15}}$
$\because $ distance never be negative then
X = 15m
Therefore, the horizontal distance between the two trees is 15m.
Note - In this problem, first let assume the variable for unknown and then apply the Pythagoras theorem and get the value of unknown which is the horizontal distance between the two trees.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

