
The distance $({\text{in }}km)$ of $40$ engineers from their residence to their workplace were found as follows:
$\begin{array}{*{20}{c}}
5&3&{10}&{20}&{25}&{11}&{13}&7&{12}&{31} \\
{19}&{10}&{12}&{17}&{18}&{11}&{32}&{17}&{16}&2 \\
7&9&7&8&3&5&{12}&{15}&{18}&3 \\
{12}&{14}&2&9&6&{15}&{15}&7&6&{12}
\end{array}$
What is the empirical probability that an engineer lives:
i) Less than $7{\text{ }}km$ from her place of work?
ii) More than or equal to $7{\text{ }}km$ from her place of work?
iii) Within $\dfrac{1}{2}{\text{ }}km$ from her place of work?
Answer
621k+ views
Hint: Here empirical probability of an event is the ratio of the number of outcomes in which a specified event occurs to the total number of trails, not in a theoretical sample space but in an actual experiment.
Complete step-by-step answer:
Given that total number of engineers $ = 40$
From the above data it is clear that,
Number of engineers who live at a distance of less than $7{\text{ }}km$ from their place of work $ = 9$
Number of engineers who live at a distance which is more than or equal to $7{\text{ }}km$ from their place of work $ = 40 - 9 = 31$
Number of engineers living within $\dfrac{1}{2}{\text{ }}km$ from their place of work $ = 0$
$
P({\text{engineer lives less than }}7km{\text{ from her place of work) =
}}\dfrac{{{\text{number of engineers living less than }}7km{\text{ from their place of work}}}}{{{\text{total number of engineers}}}} \\
{\text{ = }}\dfrac{9}{{40}} \\
$
$
P({\text{engineer lives more than or equal }}7km{\text{ from her place of work) =
}}\dfrac{{{\text{number of engineers living more than or equal to }}7km{\text{ from their place of work}}}}{{{\text{total number of engineers}}}} \\
{\text{ = }}\dfrac{{31}}{{40}} \\
$
$
P({\text{engineer lives less than }}\dfrac{1}{2}km{\text{ from her place of work) =
}}\dfrac{{{\text{number of engineers living less than to }}\dfrac{1}{2}km{\text{ from their place of work}}}}{{{\text{total number of engineers}}}} \\
{\text{ = }}\dfrac{0}{{40}} \\
\\
{\text{ = 0}} \\
$
Hence the empirical probability that an engineer lives
i) Less than $7{\text{ }}km$ from her place of work $ = \dfrac{9}{{40}}$
ii) More than or equal to $7{\text{ }}km$ from her place of work $ = \dfrac{{31}}{{40}}$
iii) Within $\dfrac{1}{2}{\text{ }}km$ from her place of work $ = 0$
Note: The probability of an event $E$ always obeys the condition $0 \leqslant P(E) \leqslant 1$. And also, the total number of outcomes in an event is always less than the total number of outcomes is the sample space.
Complete step-by-step answer:
Given that total number of engineers $ = 40$
From the above data it is clear that,
Number of engineers who live at a distance of less than $7{\text{ }}km$ from their place of work $ = 9$
Number of engineers who live at a distance which is more than or equal to $7{\text{ }}km$ from their place of work $ = 40 - 9 = 31$
Number of engineers living within $\dfrac{1}{2}{\text{ }}km$ from their place of work $ = 0$
$
P({\text{engineer lives less than }}7km{\text{ from her place of work) =
}}\dfrac{{{\text{number of engineers living less than }}7km{\text{ from their place of work}}}}{{{\text{total number of engineers}}}} \\
{\text{ = }}\dfrac{9}{{40}} \\
$
$
P({\text{engineer lives more than or equal }}7km{\text{ from her place of work) =
}}\dfrac{{{\text{number of engineers living more than or equal to }}7km{\text{ from their place of work}}}}{{{\text{total number of engineers}}}} \\
{\text{ = }}\dfrac{{31}}{{40}} \\
$
$
P({\text{engineer lives less than }}\dfrac{1}{2}km{\text{ from her place of work) =
}}\dfrac{{{\text{number of engineers living less than to }}\dfrac{1}{2}km{\text{ from their place of work}}}}{{{\text{total number of engineers}}}} \\
{\text{ = }}\dfrac{0}{{40}} \\
\\
{\text{ = 0}} \\
$
Hence the empirical probability that an engineer lives
i) Less than $7{\text{ }}km$ from her place of work $ = \dfrac{9}{{40}}$
ii) More than or equal to $7{\text{ }}km$ from her place of work $ = \dfrac{{31}}{{40}}$
iii) Within $\dfrac{1}{2}{\text{ }}km$ from her place of work $ = 0$
Note: The probability of an event $E$ always obeys the condition $0 \leqslant P(E) \leqslant 1$. And also, the total number of outcomes in an event is always less than the total number of outcomes is the sample space.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

