The distance of Neptune and Saturn from the sun is nearly $10^{13}$m and $10^{12}$m respectively. Assuming that they move in circular orbits, their periodic times would be in the ratio of
A. 10
B. 100
C. 10$\sqrt{10}$
D. 1000
Answer
Verified
473.1k+ views
Hint: By Kepler's third law of planetary motion, the square of the time period is proportional to the cube of the length of the semi-major axis of the planet's orbit. In the case of circular motion, we can choose the radius of the orbit in place of the semi-major axis.
Formula used:
The time period of a circular orbit is given as:
$T = \sqrt{\dfrac{r^3}{GM}} $
Complete step-by-step solution:
We are given that $r = 10^{12}$ m is the distance of Saturn from the Sun and $r = 10^{13}$ m is the distance of Neptune from the Sun. These are nothing but their respective radii for circular orbits.
Keeping these values in the time period formula we get:
$T_1 = \sqrt{\dfrac{(10^{12})^3}{GM}} $
for the case of Saturn and
$T_2 = \sqrt{\dfrac{(10^{13})^3}{GM}} $
for the case of Neptune.
Taking ratios we get:
$\dfrac{T_1}{T_2} = \sqrt{\dfrac{(10^{13})^3}{(10^{12})^3}}$
Or
$\dfrac{T_1}{T_2} = \sqrt{1000} = 10 \sqrt{10}$
Therefore the correct answer is option (C).
Additional information:
If one does not remember the formula, one can equate the magnitude of centripetal force with the magnitude of gravitational force acting on the body for the case of circular motion:
$m \omega^2 r = \dfrac{GMm}{r^2}$
Gives
$ \omega^2 = \dfrac{GM}{r^3}$
We know that $\omega = 2 \pi / T$
So, this will help us in getting the same formula as the one we used in the solution.
Note: We already had the formula of the time period of a planet in case of the elliptical orbit. The area of an ellipse is $\pi ab$ and the area of a circle is $\pi r^2$. A circle is just an ellipse with zero eccentricity. Therefore, our formula can be easily guessed by the third law. And also we already know that the areal velocity of a planet is constant. The derivation for the third law comes from the second law only.
Formula used:
The time period of a circular orbit is given as:
$T = \sqrt{\dfrac{r^3}{GM}} $
Complete step-by-step solution:
We are given that $r = 10^{12}$ m is the distance of Saturn from the Sun and $r = 10^{13}$ m is the distance of Neptune from the Sun. These are nothing but their respective radii for circular orbits.
Keeping these values in the time period formula we get:
$T_1 = \sqrt{\dfrac{(10^{12})^3}{GM}} $
for the case of Saturn and
$T_2 = \sqrt{\dfrac{(10^{13})^3}{GM}} $
for the case of Neptune.
Taking ratios we get:
$\dfrac{T_1}{T_2} = \sqrt{\dfrac{(10^{13})^3}{(10^{12})^3}}$
Or
$\dfrac{T_1}{T_2} = \sqrt{1000} = 10 \sqrt{10}$
Therefore the correct answer is option (C).
Additional information:
If one does not remember the formula, one can equate the magnitude of centripetal force with the magnitude of gravitational force acting on the body for the case of circular motion:
$m \omega^2 r = \dfrac{GMm}{r^2}$
Gives
$ \omega^2 = \dfrac{GM}{r^3}$
We know that $\omega = 2 \pi / T$
So, this will help us in getting the same formula as the one we used in the solution.
Note: We already had the formula of the time period of a planet in case of the elliptical orbit. The area of an ellipse is $\pi ab$ and the area of a circle is $\pi r^2$. A circle is just an ellipse with zero eccentricity. Therefore, our formula can be easily guessed by the third law. And also we already know that the areal velocity of a planet is constant. The derivation for the third law comes from the second law only.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE