
The distances of two planets (Neptune and Saturn) from the sun are respectively. The ratio of time periods of the planets is:
A.
B.
C.
D.
Answer
417k+ views
Hint: In order to this question, to find the ratio of time periods of the given planets Neptune and Saturn, first we will rewrite the given facts of the question, and then we will apply Kepler’s 3rd law of planetary motion. And then we will also compare between Copernicus and Kepler’s 3rd law of motion, whether which one is better.
Complete answer:
Distance of Neptune from the Sun, .
Distance of Saturn from the Sun,
Now, we will apply Kepler’s third Law of Planetary Motion: Kepler's Third Law, often known as the 3rd Law of Kepler, is a fundamental law of physics that deals with the period of a satellite's revolution and how it is affected by the radius of its orbit.
So, according to Kepler’s 3rd law: the ratio of square of time period is directly proportional to the cube of distance of planets.
where, is the Time Period of Neptune.
is the Time Period of Saturn.
Therefore, the ratio of time periods of the planets is .
Hence, the correct option is D.
Note: To know which is better to apply between Copernicus and Kepler’s Law of motion, so the eccentricities of the orbits of the planets known to Copernicus and Kepler are tiny, the preceding principles provide reasonable approximations of planetary motion, but Kepler's laws better fit the data than Copernicus' model. The planetary orbit is an ellipse, not a circle.
Complete answer:
Distance of Neptune from the Sun,
Distance of Saturn from the Sun,
Now, we will apply Kepler’s third Law of Planetary Motion: Kepler's Third Law, often known as the 3rd Law of Kepler, is a fundamental law of physics that deals with the period of a satellite's revolution and how it is affected by the radius of its orbit.
So, according to Kepler’s 3rd law: the ratio of square of time period is directly proportional to the cube of distance of planets.
where,
Therefore, the ratio of time periods of the planets is
Hence, the correct option is D.
Note: To know which is better to apply between Copernicus and Kepler’s Law of motion, so the eccentricities of the orbits of the planets known to Copernicus and Kepler are tiny, the preceding principles provide reasonable approximations of planetary motion, but Kepler's laws better fit the data than Copernicus' model. The planetary orbit is an ellipse, not a circle.
Latest Vedantu courses for you
Grade 10 | CBSE | SCHOOL | English
Vedantu 10 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹37,300 per year
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
