The electronic configuration of vanadium is:
A. $[Ar]3{{d}^{4}}4{{s}^{1}}$
B. $[Ar]4{{d}^{3}}5{{s}^{2}}$
C. $[Ar]3{{d}^{3}}4{{s}^{2}}$
D. $[Ar]3{{d}^{5}}4{{s}^{0}}$
Answer
Verified
477.6k+ views
Hint: Recall the atomic number of the elements vanadium and add the electrons to the shells according to the Aufbau principle. Take note of the block in which it is present.
Complete step by step answer:
Let us look at the periodic table and locate vanadium.
Here, we can see that the atomic number of vanadium is 23 and it is present in the d-block of elements. This implies that the last electron to be filled in the orbitals of vanadium will be in the d-orbital. First, we will see what the configuration of vanadium is, upto argon, or 18 electrons. The configuration of argon is $1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}$, so out of the 23 electrons, 18 electrons have already been placed in orbitals in a stable manner. Only 5 electrons are left to be placed now.
First, let us see the orbitals placed in the order of increasing energy. The order is:
\[1s<2s<2p<3s<3p<4s<3d<4p\]
From this, we can say that after the $3p$ orbital has been filled, the $4s$ orbital has lower energy and will be filled earlier than the $3d$ orbital. So, we will put the 5 electrons as $4{{s}^{2}}3{{d}^{3}}$. The total electronic configuration according to this will be $[Ar]4{{s}^{2}}3{{d}^{3}}$.
So, the correct answer is “Option C”.
Note: Please don’t get confused if the orbitals are not given in the order specified by the Aufbau principle. Always draw the diagram for the relative energy of the orbitals before attempting these questions.
Complete step by step answer:
Let us look at the periodic table and locate vanadium.
Here, we can see that the atomic number of vanadium is 23 and it is present in the d-block of elements. This implies that the last electron to be filled in the orbitals of vanadium will be in the d-orbital. First, we will see what the configuration of vanadium is, upto argon, or 18 electrons. The configuration of argon is $1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}$, so out of the 23 electrons, 18 electrons have already been placed in orbitals in a stable manner. Only 5 electrons are left to be placed now.
First, let us see the orbitals placed in the order of increasing energy. The order is:
\[1s<2s<2p<3s<3p<4s<3d<4p\]
From this, we can say that after the $3p$ orbital has been filled, the $4s$ orbital has lower energy and will be filled earlier than the $3d$ orbital. So, we will put the 5 electrons as $4{{s}^{2}}3{{d}^{3}}$. The total electronic configuration according to this will be $[Ar]4{{s}^{2}}3{{d}^{3}}$.
So, the correct answer is “Option C”.
Note: Please don’t get confused if the orbitals are not given in the order specified by the Aufbau principle. Always draw the diagram for the relative energy of the orbitals before attempting these questions.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE