Answer
Verified
453k+ views
Hint: We solve the equation for the value of ‘a’ by converting the part of the given equation similar to the formula\[{(a + b)^2} = {a^2} + {b^2} + 2ab\]. Since we know a solution of an equation exists implies its factors are equal to zero, so we equate the factors to zero and find the value of ‘a’.
Complete step-by-step solution:
We are given the equation\[4{\sin ^2}x + 4\sin x + {a^2} - 3 = 0\]
We add and subtract the same term from LHS of the equation such that it helps us to pair up terms in a way like the identity\[{(a + b)^2} = {a^2} + {b^2} + 2ab\].
Add and subtract 1 from LHS of the equation.
\[ \Rightarrow 4{\sin ^2}x + 4\sin x + {a^2} - 3 + 1 - 1 = 0\]....................… (1)
We can write;\[{1^2} = 1\],\[4{\sin ^2}x = {(2\sin x)^2}\]and\[4\sin x = 2 \times 2\sin x \times 1\]
Substitute these values in equation (1)
\[ \Rightarrow {\left( {2\sin x} \right)^2} + {(1)^2} + 2 \times \left( {2\sin x \times 1} \right) + {a^2} - 3 - 1 = 0\]...............… (2)
Use the identity \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]to write\[{\left( {2\sin x} \right)^2} + {(1)^2} + 2 \times \left( {2\sin x \times 1} \right) = {\left( {2\sin x + 1} \right)^2}\]
Substitute the value of \[{\left( {2\sin x} \right)^2} + {(1)^2} + 2 \times \left( {2\sin x \times 1} \right) = {\left( {2\sin x + 1} \right)^2}\]in equation (2)
\[ \Rightarrow {\left( {2\sin x + 1} \right)^2} + {a^2} - 4 = 0\]
Shift all constant values to RHS of the equation
\[ \Rightarrow {\left( {2\sin x + 1} \right)^2} = 4 - {a^2}\]...................… (3)
For equation (1) to have a solution RHS should be equal to zero
\[ \Rightarrow 4 - {a^2} = 0\]
Shift constant value to one side of the equation
\[ \Rightarrow 4 = {a^2}\]
Take square root on both sides of the equation
\[ \Rightarrow \sqrt 4 = \sqrt {{a^2}} \]
\[ \Rightarrow \sqrt {{2^2}} = \sqrt {{a^2}} \]
Cancel square root by square power on both sides of the equation
\[ \Rightarrow a = \pm 2\]
\[ \Rightarrow a = - 2,2\]...................… (4)
\[\therefore a \in ( - 2,2)\]
\[\therefore \]Option C is the correct answer.
Note: Alternate method:
We can also find the value using a discriminant method.
Since Discriminant of a quadratic equation \[a{x^2} + bx + c = 0\]is given by \[D = {b^2} - 4ac\]
On comparing equation\[4{\sin ^2}x + 4\sin x + {a^2} - 3 = 0\] with general quadratic equation;
\[a = 4;b = 4;c = {a^2} - 3\]
Discriminant of equation\[4{\sin ^2}x + 4\sin x + {a^2} - 3 = 0\] will be
\[ \Rightarrow D = {(4)^2} - 4(4)({a^2} - 3)\]
\[ \Rightarrow D = 16 - 16{a^2} + 48\]
Add constant terms
\[ \Rightarrow D = - 16{a^2} + 64\].................… (1)
We know if \[D \geqslant 0\] then the equation has two real solutions.
We substitute the value of D from equation (1)
\[ \Rightarrow - 16{a^2} + 64 \geqslant 0\]
Take -16 common from both terms
\[ \Rightarrow - 16({a^2} - 4) \geqslant 0\]
\[ \Rightarrow ({a^2} - 4) \geqslant 0\]
Since we know the identity \[{x^2} - {y^2} = (x - y)(x + y)\]
\[ \Rightarrow (a - 2)(a + 2) \geqslant 0\]
Either \[a \geqslant 2\]or \[a \leqslant - 2\]
\[\therefore a \in ( - 2,2)\]
\[\therefore \]Option C is correct.
Complete step-by-step solution:
We are given the equation\[4{\sin ^2}x + 4\sin x + {a^2} - 3 = 0\]
We add and subtract the same term from LHS of the equation such that it helps us to pair up terms in a way like the identity\[{(a + b)^2} = {a^2} + {b^2} + 2ab\].
Add and subtract 1 from LHS of the equation.
\[ \Rightarrow 4{\sin ^2}x + 4\sin x + {a^2} - 3 + 1 - 1 = 0\]....................… (1)
We can write;\[{1^2} = 1\],\[4{\sin ^2}x = {(2\sin x)^2}\]and\[4\sin x = 2 \times 2\sin x \times 1\]
Substitute these values in equation (1)
\[ \Rightarrow {\left( {2\sin x} \right)^2} + {(1)^2} + 2 \times \left( {2\sin x \times 1} \right) + {a^2} - 3 - 1 = 0\]...............… (2)
Use the identity \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]to write\[{\left( {2\sin x} \right)^2} + {(1)^2} + 2 \times \left( {2\sin x \times 1} \right) = {\left( {2\sin x + 1} \right)^2}\]
Substitute the value of \[{\left( {2\sin x} \right)^2} + {(1)^2} + 2 \times \left( {2\sin x \times 1} \right) = {\left( {2\sin x + 1} \right)^2}\]in equation (2)
\[ \Rightarrow {\left( {2\sin x + 1} \right)^2} + {a^2} - 4 = 0\]
Shift all constant values to RHS of the equation
\[ \Rightarrow {\left( {2\sin x + 1} \right)^2} = 4 - {a^2}\]...................… (3)
For equation (1) to have a solution RHS should be equal to zero
\[ \Rightarrow 4 - {a^2} = 0\]
Shift constant value to one side of the equation
\[ \Rightarrow 4 = {a^2}\]
Take square root on both sides of the equation
\[ \Rightarrow \sqrt 4 = \sqrt {{a^2}} \]
\[ \Rightarrow \sqrt {{2^2}} = \sqrt {{a^2}} \]
Cancel square root by square power on both sides of the equation
\[ \Rightarrow a = \pm 2\]
\[ \Rightarrow a = - 2,2\]...................… (4)
\[\therefore a \in ( - 2,2)\]
\[\therefore \]Option C is the correct answer.
Note: Alternate method:
We can also find the value using a discriminant method.
Since Discriminant of a quadratic equation \[a{x^2} + bx + c = 0\]is given by \[D = {b^2} - 4ac\]
On comparing equation\[4{\sin ^2}x + 4\sin x + {a^2} - 3 = 0\] with general quadratic equation;
\[a = 4;b = 4;c = {a^2} - 3\]
Discriminant of equation\[4{\sin ^2}x + 4\sin x + {a^2} - 3 = 0\] will be
\[ \Rightarrow D = {(4)^2} - 4(4)({a^2} - 3)\]
\[ \Rightarrow D = 16 - 16{a^2} + 48\]
Add constant terms
\[ \Rightarrow D = - 16{a^2} + 64\].................… (1)
We know if \[D \geqslant 0\] then the equation has two real solutions.
We substitute the value of D from equation (1)
\[ \Rightarrow - 16{a^2} + 64 \geqslant 0\]
Take -16 common from both terms
\[ \Rightarrow - 16({a^2} - 4) \geqslant 0\]
\[ \Rightarrow ({a^2} - 4) \geqslant 0\]
Since we know the identity \[{x^2} - {y^2} = (x - y)(x + y)\]
\[ \Rightarrow (a - 2)(a + 2) \geqslant 0\]
Either \[a \geqslant 2\]or \[a \leqslant - 2\]
\[\therefore a \in ( - 2,2)\]
\[\therefore \]Option C is correct.
Recently Updated Pages
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
What is the maximum resistance which can be made using class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE