Answer
Verified
460.5k+ views
Hint: Here, we will use the formula of discriminant is calculated \[{b^2} - 4ac\] of the standard form of quadratic equation is \[a{x^2} + bx + c\]. Then we will compare the given expression with the standard form of the quadratic equation to find the value of \[a\], \[b\] and \[c\]. Then we will substitute the above value of \[a\], \[b\] and \[c\] in the formula of discriminant. Since we know that when \[y\] is always positive, the discriminant \[D\] is less than 0 and then simplifies to find the required interval.
Complete step-by-step answer:
We are given that the equation \[\left( {\cos p - 1} \right){x^2} + \cos px + \sin p = 0\], in the variable \[x\] has real roots.
We know that any quadratic equation has real roots when its discriminant is non-negative.
We know that the discriminant is calculated using the formula \[{b^2} - 4ac\] of the standard form of quadratic equation is \[a{x^2} + bx + c\].
Comparing the given expression with the standard form of quadratic equation to find the value of \[a\], \[b\] and \[c\], we get
\[a = \cos p - 1\]
\[b = \cos p\]
\[c = \sin p\]
Substituting the above value of \[a\], \[b\] and \[c\] in the formula of discriminant, we get
\[
\Rightarrow {\cos ^2}p - 4 \cdot \sin p \cdot \left( {\cos p - 1} \right) \\
\Rightarrow {\cos ^2}p - 4\sin p\left( {\cos p - 1} \right) \\
\]
Since we know that when is always non-negative, the discriminant \[D\] is greater than equal to 0.
\[ \Rightarrow {\cos ^2}p - 4\sin p\left( {\cos p - 1} \right) \geqslant 0\]
So we have observed that \[{\cos ^2}x \geqslant 0\],\[4\sin p\left( {\cos p - 1} \right) \geqslant 0\] \[\forall x \in \mathbb{R}\].
Since the discriminant is always non-negative \[\sin p \geqslant 0\] and we know that \[\sin x\] is positive only in the 1st and 2nd quadrant.
Therefore, the interval of \[p\] is \[\left[ {0,\pi } \right]\].
Hence, option D is correct.
Note: A quadratic is a type of problem that deals with a variable multiplied by itself and an operation known as squaring. One should know that in an equation \[a{x^2} + bx + c\], the sum of roots of the equation is equal \[ - a\] and product is equal to \[b\]. We need to know the product of a negative number and a positive number is a negative. Substitute the values properly and avoid calculation mistakes.
Complete step-by-step answer:
We are given that the equation \[\left( {\cos p - 1} \right){x^2} + \cos px + \sin p = 0\], in the variable \[x\] has real roots.
We know that any quadratic equation has real roots when its discriminant is non-negative.
We know that the discriminant is calculated using the formula \[{b^2} - 4ac\] of the standard form of quadratic equation is \[a{x^2} + bx + c\].
Comparing the given expression with the standard form of quadratic equation to find the value of \[a\], \[b\] and \[c\], we get
\[a = \cos p - 1\]
\[b = \cos p\]
\[c = \sin p\]
Substituting the above value of \[a\], \[b\] and \[c\] in the formula of discriminant, we get
\[
\Rightarrow {\cos ^2}p - 4 \cdot \sin p \cdot \left( {\cos p - 1} \right) \\
\Rightarrow {\cos ^2}p - 4\sin p\left( {\cos p - 1} \right) \\
\]
Since we know that when is always non-negative, the discriminant \[D\] is greater than equal to 0.
\[ \Rightarrow {\cos ^2}p - 4\sin p\left( {\cos p - 1} \right) \geqslant 0\]
So we have observed that \[{\cos ^2}x \geqslant 0\],\[4\sin p\left( {\cos p - 1} \right) \geqslant 0\] \[\forall x \in \mathbb{R}\].
Since the discriminant is always non-negative \[\sin p \geqslant 0\] and we know that \[\sin x\] is positive only in the 1st and 2nd quadrant.
Therefore, the interval of \[p\] is \[\left[ {0,\pi } \right]\].
Hence, option D is correct.
Note: A quadratic is a type of problem that deals with a variable multiplied by itself and an operation known as squaring. One should know that in an equation \[a{x^2} + bx + c\], the sum of roots of the equation is equal \[ - a\] and product is equal to \[b\]. We need to know the product of a negative number and a positive number is a negative. Substitute the values properly and avoid calculation mistakes.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE