Answer
Verified
492.9k+ views
Hint: Substitute the given points into the standard equation of line formula.
The equations of the given lines are $x=0$ and $y=0$. The coordinates of the point of
intersections are already available. This means that the point of intersection of these lines would be
$\left( 0,0 \right)$. Another point through which the required line passes through is given in the
question as $\left( 2,2 \right)$.
Now, we know that the equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and
\[({{x}_{2}},{{y}_{2}})\] is given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
So, the equation of the required line passing through $\left( 0,0 \right)$ and $\left( 2,2 \right)$ can
be obtained as,
$y-0=\dfrac{2-0}{2-0}\left( x-0 \right)$
Therefore, the equation of the required line is $y=x$.
Hence, we get option (c) as the correct answer.
Note: The equations $x=0$ and $y=0$ indicate that the required line passes through the origin. So,
the formula to find the equation of the line passing through a point $\left( {{x}_{1}},{{y}_{1}} \right)$
can be obtained as $y=mx$, where $m=\dfrac{{{y}_{1}}}{{{x}_{1}}}$ is the slope.
The equations of the given lines are $x=0$ and $y=0$. The coordinates of the point of
intersections are already available. This means that the point of intersection of these lines would be
$\left( 0,0 \right)$. Another point through which the required line passes through is given in the
question as $\left( 2,2 \right)$.
Now, we know that the equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and
\[({{x}_{2}},{{y}_{2}})\] is given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
So, the equation of the required line passing through $\left( 0,0 \right)$ and $\left( 2,2 \right)$ can
be obtained as,
$y-0=\dfrac{2-0}{2-0}\left( x-0 \right)$
Therefore, the equation of the required line is $y=x$.
Hence, we get option (c) as the correct answer.
Note: The equations $x=0$ and $y=0$ indicate that the required line passes through the origin. So,
the formula to find the equation of the line passing through a point $\left( {{x}_{1}},{{y}_{1}} \right)$
can be obtained as $y=mx$, where $m=\dfrac{{{y}_{1}}}{{{x}_{1}}}$ is the slope.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE