Answer
Verified
397.8k+ views
Hint: In order to determine the required equation of a plane passing through the line intersection of the plane \[x + 2y + 3z = 2\] and \[x - y + z = 3\].First, we compare this equation with the two plane \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0,\lambda \in \mathbb{R}\] then we get the equation as \[ax + by + cz + d = 0\] with the points
.The distance between the line is \[2\sqrt 3 \]. Adding the two planes does not yield their line of intersection. In fact, it is the equation of a plane passing through their line of intersection, rather than a line with the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. We use the formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]. We need to solve the question to get the required solution.
Complete step-by-step answer:
In this given problem,
We are given the line of intersection of planes \[x + 2y + 3z = 2\]and \[x - y + z = 3\] at a distance \[2\sqrt 3 \] from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
In this question we are supposed to find out the equation of a plane passing through the line of intersection of the planes
Let us consider the two plane equation as\[{P_1}:x + 2y + 3z = 2\]and \[{P_2}:x - y + z = 3\],
Let \[D\] be the distance,\[D = \dfrac{2}{{\sqrt 3 }}\]
For this we have to first determine the plane equation \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0\] as \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\] to simplify the this equation as the form \[ax + by + cz + d = 0\] with the point \[(x,y,z)\] as \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
Now, we have to simplify the equation \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\]
\[
(x + 2y + 3z - 2 + \lambda x - \lambda y + \lambda z - 3\lambda ) = 0 \\
(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0 \to (3) \\
\]
Here, directly compare the equation\[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] with\[ax + by + cz + d = 0\]. Where, \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]
The formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]
We have the values \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]and the given distance \[D = \dfrac{2}{{\sqrt 3 }}\] By substitute all the values and points \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] into the equation to find out the value\[\lambda \]
\[ \Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3(1 + \lambda ) + (2 - \lambda ) - (3 + \lambda ) - (2 + 3\lambda )} \right|}}{{\sqrt {{{(1 + \lambda )}^2} + {{(2 - \lambda )}^2} + {{(3 + \lambda )}^2}} }}\].
Comparing the denominator\[{(1 + \lambda )^2},({(2 - \lambda )^2},{(3 + \lambda )^2}\] with the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab\] by expanding the bracket on RHS, we get
\[
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda } \right|}}{{\sqrt {1 + {\lambda ^2} + 2\lambda + 4 + {\lambda ^2} - 4\lambda + 9 + {\lambda ^2} + 6\lambda } }} \\
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| { - 2\lambda } \right|}}{{\sqrt {3{\lambda ^2} + 4\lambda + 14} }} \;
\]
Take square on both sides of numerator and denominator, we get
\[
\Rightarrow \dfrac{{{{(2)}^2}}}{{{{(\sqrt 3 )}^2}}} = \dfrac{{{{( - 2\lambda )}^2}}}{{{{(\sqrt {3{\lambda ^2} + 4\lambda + 14} )}^2}}} \\
\Rightarrow \dfrac{4}{3} = \dfrac{{4{\lambda ^2}}}{{(3{\lambda ^2} + 4\lambda + 14)}}\]
By simplify in further step to solving the fraction on both sides, we get
\[
4(3{\lambda ^2} + 4\lambda + 14) = 4(3){\lambda ^2} \\
3{\lambda ^2} + 4\lambda + 14 = 3{\lambda ^2} \;
\]
Combining all the terms together to find out the value,\[\lambda \], we get
\[
3{\lambda ^2} + 4\lambda + 14 - 3{\lambda ^2} = 0 \Rightarrow 4\lambda + 14 = 0 \\
4\lambda = - 14 \Rightarrow \lambda = - \dfrac{{14}}{4} \;
\]
Therefore, the value of \[\lambda = - \dfrac{7}{2}\]. Then
Let the equation \[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] on comparing with \[ax + by + cz + d = 0\] and substitute the \[\lambda = - \dfrac{7}{2}\] into plane equation.
\[
\lambda = - \dfrac{7}{2} \Rightarrow \left( {1 - \dfrac{7}{2}} \right)x + \left( {2 + \dfrac{7}{2}} \right)y + \left( {3 - \dfrac{7}{2}} \right)z - \left( {2 + 3\left( {\dfrac{{ - 7}}{2}} \right)} \right) = 0 \;
\]
Take LCM on the above equation, so we get
\[
\left( {\dfrac{{2 - 7}}{2}} \right)x + \left( {\dfrac{{4 + 7}}{2}} \right)y + \left( {\dfrac{{6 - 7}}{2}} \right)z - \left( {\dfrac{{4 - 21}}{2}} \right) = 0 \\
- \dfrac{5}{2}x + \dfrac{{11}}{2}y - \dfrac{1}{2}z + \dfrac{{17}}{2} = 0 \;
\]
We perform multiplication on both sides by \[2\] to simplify the fraction, we can get
\[ - 5x + 11y - z + 17 = 0\]
Therefore, The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] and \[x - y + z = 3\] and at a distance \[2\sqrt 3 \]from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] is \[ - 5x + 11y - z + 17 = 0\]
So, the final answer is option A: \[5x - 11y + z = 17\]
So, the correct answer is “Option A”.
Note: In this problem, always try to understand the mathematical statement .when using the distance formula, use the notation for the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. This will help to find out the final equation by substituting the values into the formula.
.The distance between the line is \[2\sqrt 3 \]. Adding the two planes does not yield their line of intersection. In fact, it is the equation of a plane passing through their line of intersection, rather than a line with the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. We use the formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]. We need to solve the question to get the required solution.
Complete step-by-step answer:
In this given problem,
We are given the line of intersection of planes \[x + 2y + 3z = 2\]and \[x - y + z = 3\] at a distance \[2\sqrt 3 \] from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
In this question we are supposed to find out the equation of a plane passing through the line of intersection of the planes
Let us consider the two plane equation as\[{P_1}:x + 2y + 3z = 2\]and \[{P_2}:x - y + z = 3\],
Let \[D\] be the distance,\[D = \dfrac{2}{{\sqrt 3 }}\]
For this we have to first determine the plane equation \[{{\rm P}_1} + \lambda {{\rm P}_2} = 0\] as \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\] to simplify the this equation as the form \[ax + by + cz + d = 0\] with the point \[(x,y,z)\] as \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\].
Now, we have to simplify the equation \[(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0\]
\[
(x + 2y + 3z - 2 + \lambda x - \lambda y + \lambda z - 3\lambda ) = 0 \\
(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0 \to (3) \\
\]
Here, directly compare the equation\[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] with\[ax + by + cz + d = 0\]. Where, \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]
The formula for the plane distance is \[D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\]
We have the values \[a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )\]and the given distance \[D = \dfrac{2}{{\sqrt 3 }}\] By substitute all the values and points \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] into the equation to find out the value\[\lambda \]
\[ \Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3(1 + \lambda ) + (2 - \lambda ) - (3 + \lambda ) - (2 + 3\lambda )} \right|}}{{\sqrt {{{(1 + \lambda )}^2} + {{(2 - \lambda )}^2} + {{(3 + \lambda )}^2}} }}\].
Comparing the denominator\[{(1 + \lambda )^2},({(2 - \lambda )^2},{(3 + \lambda )^2}\] with the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab\] by expanding the bracket on RHS, we get
\[
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda } \right|}}{{\sqrt {1 + {\lambda ^2} + 2\lambda + 4 + {\lambda ^2} - 4\lambda + 9 + {\lambda ^2} + 6\lambda } }} \\
\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| { - 2\lambda } \right|}}{{\sqrt {3{\lambda ^2} + 4\lambda + 14} }} \;
\]
Take square on both sides of numerator and denominator, we get
\[
\Rightarrow \dfrac{{{{(2)}^2}}}{{{{(\sqrt 3 )}^2}}} = \dfrac{{{{( - 2\lambda )}^2}}}{{{{(\sqrt {3{\lambda ^2} + 4\lambda + 14} )}^2}}} \\
\Rightarrow \dfrac{4}{3} = \dfrac{{4{\lambda ^2}}}{{(3{\lambda ^2} + 4\lambda + 14)}}\]
By simplify in further step to solving the fraction on both sides, we get
\[
4(3{\lambda ^2} + 4\lambda + 14) = 4(3){\lambda ^2} \\
3{\lambda ^2} + 4\lambda + 14 = 3{\lambda ^2} \;
\]
Combining all the terms together to find out the value,\[\lambda \], we get
\[
3{\lambda ^2} + 4\lambda + 14 - 3{\lambda ^2} = 0 \Rightarrow 4\lambda + 14 = 0 \\
4\lambda = - 14 \Rightarrow \lambda = - \dfrac{{14}}{4} \;
\]
Therefore, the value of \[\lambda = - \dfrac{7}{2}\]. Then
Let the equation \[(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0\] on comparing with \[ax + by + cz + d = 0\] and substitute the \[\lambda = - \dfrac{7}{2}\] into plane equation.
\[
\lambda = - \dfrac{7}{2} \Rightarrow \left( {1 - \dfrac{7}{2}} \right)x + \left( {2 + \dfrac{7}{2}} \right)y + \left( {3 - \dfrac{7}{2}} \right)z - \left( {2 + 3\left( {\dfrac{{ - 7}}{2}} \right)} \right) = 0 \;
\]
Take LCM on the above equation, so we get
\[
\left( {\dfrac{{2 - 7}}{2}} \right)x + \left( {\dfrac{{4 + 7}}{2}} \right)y + \left( {\dfrac{{6 - 7}}{2}} \right)z - \left( {\dfrac{{4 - 21}}{2}} \right) = 0 \\
- \dfrac{5}{2}x + \dfrac{{11}}{2}y - \dfrac{1}{2}z + \dfrac{{17}}{2} = 0 \;
\]
We perform multiplication on both sides by \[2\] to simplify the fraction, we can get
\[ - 5x + 11y - z + 17 = 0\]
Therefore, The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] and \[x - y + z = 3\] and at a distance \[2\sqrt 3 \]from the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] is \[ - 5x + 11y - z + 17 = 0\]
So, the final answer is option A: \[5x - 11y + z = 17\]
So, the correct answer is “Option A”.
Note: In this problem, always try to understand the mathematical statement .when using the distance formula, use the notation for the point \[\left( {3,{\text{ }}1,{\text{ }} - 1} \right)\] as \[(x,y,z)\]. This will help to find out the final equation by substituting the values into the formula.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE