Answer
Verified
443.1k+ views
Hint: Here, we will use the formula of the equation of the plane passing through the intersection of two planes. Then we will substitute the value of a point lying on this plane using the fact that it is perpendicular to the\[xy\] plane. From this we will get the value of \[\lambda \], and substituting its value, we will get the required equation of the plane.
Formula Used:
Equation of passing through intersection of two plane \[ = \left( {\,{A_1}x + {B_1}y + {C_1}z - {d_1}} \right) + \lambda \left( {{A_2}x + {B_2}y + {C_2}z - {d_2}} \right)\]
Complete step-by-step answer:
We know that, equation of passing through intersection of two planes which are in the form of \[{A_1}x + {B_1}y + {C_1}z = {d_1}\] and \[{A_2}x + {B_2}y + {C_2}z = {d_2}\] is given as:
\[\left( {\,{A_1}x + {B_1}y + {C_1}z - {d_1}} \right) + \lambda \left( {{A_2}x + {B_2}y + {C_2}z - {d_2}} \right)\]…………………………………\[\left( 1 \right)\]
Comparing the general equation of two planes by the given planes, we get,
\[{A_1}x + {B_1}y + {C_1}z - {d_1} = ax + by + cz + d\]
and
\[{A_2}x + {B_2}y + {C_2}z - {d_2} = \alpha x + \beta y + \gamma z + e\]
Hence, from equation \[\left( 1 \right)\], we get
Equation of the planes passing through intersection of given planes \[ = \left( {ax + by + cz + d} \right) + \lambda \left( {\alpha x + \beta y + \gamma z + e} \right)\]
Opening the brackets and taking the like variables common, we get,
\[ \Rightarrow \] Equation of the plane \[ = \left( {a + \lambda \alpha } \right)x + \left( {b + \lambda \beta } \right)y + \left( {c + \lambda \gamma } \right)z + d + \lambda e = 0\]……………….\[\left( 2 \right)\]
Also, according to the question, this plane is also perpendicular to \[xy\] plane.
Hence, if a plane is perpendicular to \[xy\] plane then it means that it lies on \[z\] plane.
Then, its coordinates are of the form \[\left( {0,0,1} \right)\], where \[x\] and \[y\] coordinates are 0 and \[z\] coordinate is 1.
Hence, substituting \[x = 0\], \[y = 0\] and \[z = 1\] in \[\left( {a + \lambda \alpha } \right)x + \left( {b + \lambda \beta } \right)y + \left( {c + \lambda \gamma } \right)z\], we get
\[\left( {a + \lambda \alpha } \right)\left( 0 \right) + \left( {b + \lambda \beta } \right)\left( 0 \right) + \left( {c + \lambda \gamma } \right)\left( 1 \right) = 0\]
\[ \Rightarrow 0 + 0 + \left( {c + \lambda \gamma } \right) = 0\]
Now, rewriting this as:
\[ \Rightarrow \lambda = \dfrac{{ - c}}{\gamma }\]
Now, substituting \[\lambda = \dfrac{{ - c}}{\gamma }\] in equation \[\left( 2 \right)\], we get
\[\left( {a + \left( {\dfrac{{ - c}}{\gamma }} \right)\alpha } \right)x + \left( {b + \left( {\dfrac{{ - c}}{\gamma }} \right)\beta } \right)y + \left( {c + \left( {\dfrac{{ - c}}{\gamma }} \right)\gamma } \right)z + d + \left( {\dfrac{{ - c}}{\gamma }} \right)e = 0\]
Taking LCM and solving further, we get
\[ \Rightarrow \left( {a\gamma - c\alpha } \right)x + \left( {b\gamma - c\beta } \right)y + \left( {c\gamma - c\gamma } \right)z + d\gamma - ce = 0\]
\[ \Rightarrow \left( {a\gamma - c\alpha } \right)x + \left( {b\gamma - c\beta } \right)y + d\gamma - ce = 0\]
Hence, the equation of the plane through the line of intersection of the planes is \[\left( {a\gamma - c\alpha } \right)x + \left( {b\gamma - c\beta } \right)y + \left( {d\gamma - ce} \right) = 0\].
Therefore, option A is the correct answer.
Note: A plane is a two dimensional flat surface in which if any two random points are chosen then, the straight line joining those points completely lie on that plane. A plane is defined by three points unless they are forming a straight line. In a scalar equation, when a plane passes through the intersection of two planes, then we combine their equations to form one single equation of the required plane.
Formula Used:
Equation of passing through intersection of two plane \[ = \left( {\,{A_1}x + {B_1}y + {C_1}z - {d_1}} \right) + \lambda \left( {{A_2}x + {B_2}y + {C_2}z - {d_2}} \right)\]
Complete step-by-step answer:
We know that, equation of passing through intersection of two planes which are in the form of \[{A_1}x + {B_1}y + {C_1}z = {d_1}\] and \[{A_2}x + {B_2}y + {C_2}z = {d_2}\] is given as:
\[\left( {\,{A_1}x + {B_1}y + {C_1}z - {d_1}} \right) + \lambda \left( {{A_2}x + {B_2}y + {C_2}z - {d_2}} \right)\]…………………………………\[\left( 1 \right)\]
Comparing the general equation of two planes by the given planes, we get,
\[{A_1}x + {B_1}y + {C_1}z - {d_1} = ax + by + cz + d\]
and
\[{A_2}x + {B_2}y + {C_2}z - {d_2} = \alpha x + \beta y + \gamma z + e\]
Hence, from equation \[\left( 1 \right)\], we get
Equation of the planes passing through intersection of given planes \[ = \left( {ax + by + cz + d} \right) + \lambda \left( {\alpha x + \beta y + \gamma z + e} \right)\]
Opening the brackets and taking the like variables common, we get,
\[ \Rightarrow \] Equation of the plane \[ = \left( {a + \lambda \alpha } \right)x + \left( {b + \lambda \beta } \right)y + \left( {c + \lambda \gamma } \right)z + d + \lambda e = 0\]……………….\[\left( 2 \right)\]
Also, according to the question, this plane is also perpendicular to \[xy\] plane.
Hence, if a plane is perpendicular to \[xy\] plane then it means that it lies on \[z\] plane.
Then, its coordinates are of the form \[\left( {0,0,1} \right)\], where \[x\] and \[y\] coordinates are 0 and \[z\] coordinate is 1.
Hence, substituting \[x = 0\], \[y = 0\] and \[z = 1\] in \[\left( {a + \lambda \alpha } \right)x + \left( {b + \lambda \beta } \right)y + \left( {c + \lambda \gamma } \right)z\], we get
\[\left( {a + \lambda \alpha } \right)\left( 0 \right) + \left( {b + \lambda \beta } \right)\left( 0 \right) + \left( {c + \lambda \gamma } \right)\left( 1 \right) = 0\]
\[ \Rightarrow 0 + 0 + \left( {c + \lambda \gamma } \right) = 0\]
Now, rewriting this as:
\[ \Rightarrow \lambda = \dfrac{{ - c}}{\gamma }\]
Now, substituting \[\lambda = \dfrac{{ - c}}{\gamma }\] in equation \[\left( 2 \right)\], we get
\[\left( {a + \left( {\dfrac{{ - c}}{\gamma }} \right)\alpha } \right)x + \left( {b + \left( {\dfrac{{ - c}}{\gamma }} \right)\beta } \right)y + \left( {c + \left( {\dfrac{{ - c}}{\gamma }} \right)\gamma } \right)z + d + \left( {\dfrac{{ - c}}{\gamma }} \right)e = 0\]
Taking LCM and solving further, we get
\[ \Rightarrow \left( {a\gamma - c\alpha } \right)x + \left( {b\gamma - c\beta } \right)y + \left( {c\gamma - c\gamma } \right)z + d\gamma - ce = 0\]
\[ \Rightarrow \left( {a\gamma - c\alpha } \right)x + \left( {b\gamma - c\beta } \right)y + d\gamma - ce = 0\]
Hence, the equation of the plane through the line of intersection of the planes is \[\left( {a\gamma - c\alpha } \right)x + \left( {b\gamma - c\beta } \right)y + \left( {d\gamma - ce} \right) = 0\].
Therefore, option A is the correct answer.
Note: A plane is a two dimensional flat surface in which if any two random points are chosen then, the straight line joining those points completely lie on that plane. A plane is defined by three points unless they are forming a straight line. In a scalar equation, when a plane passes through the intersection of two planes, then we combine their equations to form one single equation of the required plane.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE