The equation \[{x^2} - px + q = 0\] where \[p,q \in R\] has no real roots if
A.\[{p^2} > 4q\]
B.\[{p^2} < 4q\]
C.\[{p^2} = 4q\]
D.None of these
Answer
Verified
466.2k+ views
Hint: Given equation \[{x^2} - px + q = 0\] is of the form \[a{x^2} + bx + c = 0\] . This is a quadratic equation. The nature of the roots of a quadratic equation depends on the term \[{b^2} - 4ac\] . So let’s check it with the given equation.
Complete step-by-step answer:
Now the given equation is \[{x^2} - px + q = 0\]. Comparing this with the general quadratic equation \[a{x^2} + bx + c = 0\] we get a=1, b=-p and c=q. Also it is given that \[p,q \in R\].
The term that decides the nature of the roots of the equation is,
\[
{b^2} - 4ac \Rightarrow {\left( { - p} \right)^2} - 4 \times 1 \times q \\
\Rightarrow {p^2} - 4q \\
\]
Now if \[{p^2} - 4q < 0\] then the given equation has no real roots because, roots of the equation is given by,
\[
\Rightarrow \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\
\Rightarrow \dfrac{{ - \left( { - p} \right) \pm \sqrt {{{\left( { - p} \right)}^2} - 4 \times 1 \times q} }}{{2\left( { - p} \right)}} \\
\]
\[ \Rightarrow \dfrac{{p \pm \sqrt {{p^2} - 4q} }}{{ - 2p}}\]
Now if the term in the square root is negative or less than zero then the roots so obtained are imaginary. Thus the equation has no real roots then.
Note: We will also have a look on other conditions of the nature of the roots .
Complete step-by-step answer:
Now the given equation is \[{x^2} - px + q = 0\]. Comparing this with the general quadratic equation \[a{x^2} + bx + c = 0\] we get a=1, b=-p and c=q. Also it is given that \[p,q \in R\].
The term that decides the nature of the roots of the equation is,
\[
{b^2} - 4ac \Rightarrow {\left( { - p} \right)^2} - 4 \times 1 \times q \\
\Rightarrow {p^2} - 4q \\
\]
Now if \[{p^2} - 4q < 0\] then the given equation has no real roots because, roots of the equation is given by,
\[
\Rightarrow \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\
\Rightarrow \dfrac{{ - \left( { - p} \right) \pm \sqrt {{{\left( { - p} \right)}^2} - 4 \times 1 \times q} }}{{2\left( { - p} \right)}} \\
\]
\[ \Rightarrow \dfrac{{p \pm \sqrt {{p^2} - 4q} }}{{ - 2p}}\]
Now if the term in the square root is negative or less than zero then the roots so obtained are imaginary. Thus the equation has no real roots then.
Note: We will also have a look on other conditions of the nature of the roots .
If \[{b^2} - 4ac\]>0 | The roots are real and unequal. |
If \[{b^2} - 4ac\]=0 | The roots are real and equal. |
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
List out three methods of soil conservation
Complete the following word chain of verbs Write eat class 10 english CBSE
Compare and contrast a weekly market and a shopping class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
On the outline map of India mark the following appropriately class 10 social science. CBSE