Answer
Verified
470.1k+ views
Hint: The equivalent conductance tells us about the conductance of ions that is produced by the 1 gram equivalent of a substance. Strong electrolyte completely dissociates in the solution whereas weak electrolytes don't.
Complete step by step answer:
- It is given in the question, that the molar conductance of $\text{HCl }$ and $\text{NaCl}$ are 426.15 and 126.15 $\text{mhoc}{{\text{m}}^{2}}\text{g e}{{\text{q}}^{-1}}$ respectively which means hydrochloric acid has the higher value than sodium chloride.
- Here, we know that hydrochloric acid is a strong acid and strong electrolyte also. Which means it will completely dissociate into its respective ions.
- Due to the complete dissociation, ions separate from each other and the concentration of ions increases. The increase in the concentration of the ions increases the conductivity and hence, the value of equivalent conductance also increases.
- Here, between $\text{HCl }$and $\text{NaCl}$, the $\text{C}{{\text{l}}^{1-}}$ is a common ion so we will neglect the mobility of chlorine ion.
- So, between ${{\text{H}}^{+}}$ and $\text{N}{{\text{a}}^{+}}$, ${{\text{H}}^{+}}$ ions have a higher value of equivalent conductance.
- It indicates the higher mobility of ${{\text{H}}^{+}}$ions than the sodium ions.
Therefore, option C is the correct answer.
Note: The theory of electrolytic dissociation was given by Arrhenius which states that if the electrolyte is completely dissociated then the value of molar conductance at infinite dilution will be higher.
Complete step by step answer:
- It is given in the question, that the molar conductance of $\text{HCl }$ and $\text{NaCl}$ are 426.15 and 126.15 $\text{mhoc}{{\text{m}}^{2}}\text{g e}{{\text{q}}^{-1}}$ respectively which means hydrochloric acid has the higher value than sodium chloride.
- Here, we know that hydrochloric acid is a strong acid and strong electrolyte also. Which means it will completely dissociate into its respective ions.
- Due to the complete dissociation, ions separate from each other and the concentration of ions increases. The increase in the concentration of the ions increases the conductivity and hence, the value of equivalent conductance also increases.
- Here, between $\text{HCl }$and $\text{NaCl}$, the $\text{C}{{\text{l}}^{1-}}$ is a common ion so we will neglect the mobility of chlorine ion.
- So, between ${{\text{H}}^{+}}$ and $\text{N}{{\text{a}}^{+}}$, ${{\text{H}}^{+}}$ ions have a higher value of equivalent conductance.
- It indicates the higher mobility of ${{\text{H}}^{+}}$ions than the sodium ions.
Therefore, option C is the correct answer.
Note: The theory of electrolytic dissociation was given by Arrhenius which states that if the electrolyte is completely dissociated then the value of molar conductance at infinite dilution will be higher.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE