
The Fibonacci sequence is defined by $ a_1 $ = 1 = $ a_2 $ , $ a_n = a_{n-1} + a_{n-2} $ for n >2 .
Find $ a_{n+1} / a_n $ for n = 1,2,3,4,5.
Answer
478.5k+ views
Hint: We need to find $ n=1, 2, 3,4,5 $ separately as the question says. Fibonacci sequence is the series of numbers in which a number is the addition of the last two numbers starting with $ 0 $ or $ 1 $ . Fibonacci sequence is significant and used to create technical indicators.
Complete answer:
Given $ a{_1}= \ 1 $
$ a{_2}= \ 1 $
We need to find $ a{_3} $ , $ a{_4} $ , $ a{_5} $ and $ a{_6} $
Given,
$ a{_n}\ = \ a{_{n-1}}+ \ a{_{n-2}} $ for $ \ n > 2 $
Now we need to find for $ n = 3, $
$ a{_3} = \ a{_{3-1}} + \ a{_{3-2}} = \ a{_2}+ \ a{_1} $
= $ \ 1 + 1 $
By adding ,
= $ \ 2 $
Then need to find for $ n = \ 4 $ ,
$ a{_4}= \ a{_{4-1}}+ \ a{_{4-2}}
=\ a{_3}+ \ a{_2} $
= $ \ \ 2\ + \ 1 $
By adding,
= $ \ 3 $
Next for $ n\ = 5, $
$ a{_5}= \ a{_{5-1}}+ \ a{_{5-2}}
= a{_4}+ \ a{_3} $
= $ \ 3 + 2 $
By adding,
We get,
= $ \ 5 $
Finally need to find for $ \ n\ = 6 $
$ a{_6} = \ a{_{6-1}}+ \ a{_{6-2}}
=\ a{_5}+ \ a{_4} $
= $ 5 + 3 $
By adding,
We get,
= $ 8 $
Also given,
$ a{_n}= \ a{_{n- 1}}+ a{_{n-2}} $
Now here we need to find for $ n = \ 1, $
$ (\ a{_{n+1}}\ /a{_n})= \ (a{_{1+1}}\ /a{_1} ) =\ (\ a{_2}/a{_1}) $
By substituting the values,
We get,
= $ \dfrac{1}{1} $
= $ \ 1 $
Then for $ n = 2 $
$ (a{_{n+1}}/a{_n})= \ ( a{_{2+1}}/\ a{_2}) $
$ =\ (a{_3}/\ a{_2}) $
By substituting the values,
We get,
= $ \dfrac{2}{1} $
= $ \ 2 $
Now for $ n = 3 $
$ (a{_{n+1}} /\ a{_n}) $ $ = \ (\ a{_{3+1}}/a{_3} ) $
$ = \ (a{_4}/\ a{_3}) $
By substituting the values,
We get,
= $ \dfrac{3}{2} $
Then need to find for $ n = 4 $
$ (a{_{n+1}}/\ a{_n}) $ $ = \ (a{_{4+1}}/ $ $ a{_4})= (a{_5}/a{_4}) $
By substituting the values,
We get,
= $ \dfrac{5}{3} $
Finally for $ n = 5 $
$ (a{_{n+1}}/\ a{_n}) $
= $ (\ a{_{5+1}}/\ a{_5}) $
= $ \ (a{_6}/\ a{_5}) $
By substituting the values,
We get,
= $ \dfrac{8}{5} $
Hence the value of $ (a{_{n+1}}/\ a{_n}) $ when $ n\ = \ 1,2,3,4,5\ $ are $ 1,2,\dfrac{3}{2},\dfrac{5}{3},\dfrac{8}{5} $ respectively.
Final answer :
The value of $ (a{_{n+1}}/\ a{_n}) $ when $ n\ = \ 1,2,3,4,5\ $ are $ 1,2,\dfrac{3}{2},\dfrac{5}{3},\dfrac{8}{5} $ respectively.
Note:
Another example of Fibonacci sequence is $ 0,1,1,2,3,5,8,13,21,.... $ The expression of the Fibonacci sequence is $ X{_n} = X{_{n-1}} + X{_{n-2}} $ . Mathematically Fibonacci number is strongly related to golden ratio and also closely related to lucas numbers.
Complete answer:
Given $ a{_1}= \ 1 $
$ a{_2}= \ 1 $
We need to find $ a{_3} $ , $ a{_4} $ , $ a{_5} $ and $ a{_6} $
Given,
$ a{_n}\ = \ a{_{n-1}}+ \ a{_{n-2}} $ for $ \ n > 2 $
Now we need to find for $ n = 3, $
$ a{_3} = \ a{_{3-1}} + \ a{_{3-2}} = \ a{_2}+ \ a{_1} $
= $ \ 1 + 1 $
By adding ,
= $ \ 2 $
Then need to find for $ n = \ 4 $ ,
$ a{_4}= \ a{_{4-1}}+ \ a{_{4-2}}
=\ a{_3}+ \ a{_2} $
= $ \ \ 2\ + \ 1 $
By adding,
= $ \ 3 $
Next for $ n\ = 5, $
$ a{_5}= \ a{_{5-1}}+ \ a{_{5-2}}
= a{_4}+ \ a{_3} $
= $ \ 3 + 2 $
By adding,
We get,
= $ \ 5 $
Finally need to find for $ \ n\ = 6 $
$ a{_6} = \ a{_{6-1}}+ \ a{_{6-2}}
=\ a{_5}+ \ a{_4} $
= $ 5 + 3 $
By adding,
We get,
= $ 8 $
Also given,
$ a{_n}= \ a{_{n- 1}}+ a{_{n-2}} $
Now here we need to find for $ n = \ 1, $
$ (\ a{_{n+1}}\ /a{_n})= \ (a{_{1+1}}\ /a{_1} ) =\ (\ a{_2}/a{_1}) $
By substituting the values,
We get,
= $ \dfrac{1}{1} $
= $ \ 1 $
Then for $ n = 2 $
$ (a{_{n+1}}/a{_n})= \ ( a{_{2+1}}/\ a{_2}) $
$ =\ (a{_3}/\ a{_2}) $
By substituting the values,
We get,
= $ \dfrac{2}{1} $
= $ \ 2 $
Now for $ n = 3 $
$ (a{_{n+1}} /\ a{_n}) $ $ = \ (\ a{_{3+1}}/a{_3} ) $
$ = \ (a{_4}/\ a{_3}) $
By substituting the values,
We get,
= $ \dfrac{3}{2} $
Then need to find for $ n = 4 $
$ (a{_{n+1}}/\ a{_n}) $ $ = \ (a{_{4+1}}/ $ $ a{_4})= (a{_5}/a{_4}) $
By substituting the values,
We get,
= $ \dfrac{5}{3} $
Finally for $ n = 5 $
$ (a{_{n+1}}/\ a{_n}) $
= $ (\ a{_{5+1}}/\ a{_5}) $
= $ \ (a{_6}/\ a{_5}) $
By substituting the values,
We get,
= $ \dfrac{8}{5} $
Hence the value of $ (a{_{n+1}}/\ a{_n}) $ when $ n\ = \ 1,2,3,4,5\ $ are $ 1,2,\dfrac{3}{2},\dfrac{5}{3},\dfrac{8}{5} $ respectively.
Final answer :
The value of $ (a{_{n+1}}/\ a{_n}) $ when $ n\ = \ 1,2,3,4,5\ $ are $ 1,2,\dfrac{3}{2},\dfrac{5}{3},\dfrac{8}{5} $ respectively.
Note:
Another example of Fibonacci sequence is $ 0,1,1,2,3,5,8,13,21,.... $ The expression of the Fibonacci sequence is $ X{_n} = X{_{n-1}} + X{_{n-2}} $ . Mathematically Fibonacci number is strongly related to golden ratio and also closely related to lucas numbers.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

