
The figure below is the net of a prism made up of identical triangles, what is the total area of the prism if the side of the square is 6 cm.
[a] 75 sq-cm
[b] 84 sq-cm
[c] 95 sq-cm
[d] 56 sq-cm
Answer
619.5k+ views
Hint: Find the height of the triangles and use the fact that the area of a triangle $=\dfrac{1}{2}bh$ where b is the base and h is the height and the area of a square $={{a}^{2}}$. There are four triangles and one square. So, the net area will be the sum of 4 times the area of the triangle and area of the square.
Complete step-by-step answer:
Since the length of a side of square = 6cm.
We have AD = 6cm.
Also since the triangles are identical CG = HF
Since the total height of the diagram = 14.
We have CG+AD+HF = 14
i.e. CG+HF+6 = 14
i.e. 2CG+6 = 14
Subtracting 6 from both sides we get
2CG+6-6 = 14-6
i.e. 2CG = 8
Dividing both sides by 2 we get
CG = 4cm
Since CG = HF, we have
HF = 4 cm.
Now we know that the area of a triangle $=\dfrac{1}{2}bh$
Using we get the area of triangle ABC $=\dfrac{1}{2}\times AB\times CG=\dfrac{1}{2}\times 6\times 4=\dfrac{24}{2}=12$
Also, we know that the area of a square $={{a}^{2}}$
Using, we get the area of square ABED $=A{{D}^{2}}={{6}^{2}}=36$.
Hence the total area of the prism = 4 times the area of the triangle ABC + area of square ABED
$=4\times 12+36=48+36=84$
Hence the total area of faces of prism = 84 sq-cm.
Hence option [b] is correct.
Note: Although the figure above is referred to be of a prism, it is a pyramid. A pyramid has triangular faces, whereas a prism has rectangular faces. The diagram above is of a pyramid with a square base.
Further pyramids have only one base, whereas prisms have two.
A cone is an example of a pyramid with a circular base.
Complete step-by-step answer:
Since the length of a side of square = 6cm.
We have AD = 6cm.
Also since the triangles are identical CG = HF
Since the total height of the diagram = 14.
We have CG+AD+HF = 14
i.e. CG+HF+6 = 14
i.e. 2CG+6 = 14
Subtracting 6 from both sides we get
2CG+6-6 = 14-6
i.e. 2CG = 8
Dividing both sides by 2 we get
CG = 4cm
Since CG = HF, we have
HF = 4 cm.
Now we know that the area of a triangle $=\dfrac{1}{2}bh$
Using we get the area of triangle ABC $=\dfrac{1}{2}\times AB\times CG=\dfrac{1}{2}\times 6\times 4=\dfrac{24}{2}=12$
Also, we know that the area of a square $={{a}^{2}}$
Using, we get the area of square ABED $=A{{D}^{2}}={{6}^{2}}=36$.
Hence the total area of the prism = 4 times the area of the triangle ABC + area of square ABED
$=4\times 12+36=48+36=84$
Hence the total area of faces of prism = 84 sq-cm.
Hence option [b] is correct.
Note: Although the figure above is referred to be of a prism, it is a pyramid. A pyramid has triangular faces, whereas a prism has rectangular faces. The diagram above is of a pyramid with a square base.
Further pyramids have only one base, whereas prisms have two.
A cone is an example of a pyramid with a circular base.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

