Answer
Verified
491.4k+ views
Hint: - Use the property, sum of infinite terms G.P as \[\dfrac{{{a_1}}}{{1 - r}}\]
It is given that the first term of an infinite G.P is 1.
\[ \Rightarrow {a_1} = 1\]
Now, we know the sum of infinite G.P \[\left( {{S_\infty }} \right) = \dfrac{{{a_1}}}{{1 - r}}\], (where r is the common ratio)
Let the infinite G.P series is
\[{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \]
Therefore the sum of this series is
\[{S_\infty } = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty = \dfrac{{{a_1}}}{{1 - r}}................\left( 1 \right)\]
Now according to question it is given that any term is equal to the sum of succeeding terms
\[ \Rightarrow {a_1} = {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
Now add both sides by \[{a_1}\]
\[ \Rightarrow {a_1} + {a_1} = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
From equation (1)
\[ \Rightarrow {\text{2}}{a_1} = \dfrac{{{a_1}}}{{1 - r}}\]
Now it is given that \[{a_1} = 1\]
\[
\Rightarrow {\text{2}} \times {\text{1}} = \dfrac{1}{{1 - r}} \\
\Rightarrow 1 - r = \dfrac{1}{2} \Rightarrow r = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\
\]
So the required is
\[
{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \\
= 1,{\text{ }}\dfrac{1}{2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^3}{\text{, }}{\left( {\dfrac{1}{2}} \right)^4}{\text{, }}.......................... \\
\]
So, this is the required answer.
Note: - In these types of questions the key concept is that always remember the sum of infinite terms G.P and the general series of infinite G.P, then according to given conditions calculate the value of common ratio, after getting this we can easily calculate the required infinite terms G.P series.
It is given that the first term of an infinite G.P is 1.
\[ \Rightarrow {a_1} = 1\]
Now, we know the sum of infinite G.P \[\left( {{S_\infty }} \right) = \dfrac{{{a_1}}}{{1 - r}}\], (where r is the common ratio)
Let the infinite G.P series is
\[{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \]
Therefore the sum of this series is
\[{S_\infty } = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty = \dfrac{{{a_1}}}{{1 - r}}................\left( 1 \right)\]
Now according to question it is given that any term is equal to the sum of succeeding terms
\[ \Rightarrow {a_1} = {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
Now add both sides by \[{a_1}\]
\[ \Rightarrow {a_1} + {a_1} = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
From equation (1)
\[ \Rightarrow {\text{2}}{a_1} = \dfrac{{{a_1}}}{{1 - r}}\]
Now it is given that \[{a_1} = 1\]
\[
\Rightarrow {\text{2}} \times {\text{1}} = \dfrac{1}{{1 - r}} \\
\Rightarrow 1 - r = \dfrac{1}{2} \Rightarrow r = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\
\]
So the required is
\[
{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \\
= 1,{\text{ }}\dfrac{1}{2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^3}{\text{, }}{\left( {\dfrac{1}{2}} \right)^4}{\text{, }}.......................... \\
\]
So, this is the required answer.
Note: - In these types of questions the key concept is that always remember the sum of infinite terms G.P and the general series of infinite G.P, then according to given conditions calculate the value of common ratio, after getting this we can easily calculate the required infinite terms G.P series.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE