
The first term of an infinite G.P is 1 and any term is equal to the sum of all the succeeding terms. Find the series.
Answer
519k+ views
Hint: - Use the property, sum of infinite terms G.P as \[\dfrac{{{a_1}}}{{1 - r}}\]
It is given that the first term of an infinite G.P is 1.
\[ \Rightarrow {a_1} = 1\]
Now, we know the sum of infinite G.P \[\left( {{S_\infty }} \right) = \dfrac{{{a_1}}}{{1 - r}}\], (where r is the common ratio)
Let the infinite G.P series is
\[{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \]
Therefore the sum of this series is
\[{S_\infty } = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty = \dfrac{{{a_1}}}{{1 - r}}................\left( 1 \right)\]
Now according to question it is given that any term is equal to the sum of succeeding terms
\[ \Rightarrow {a_1} = {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
Now add both sides by \[{a_1}\]
\[ \Rightarrow {a_1} + {a_1} = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
From equation (1)
\[ \Rightarrow {\text{2}}{a_1} = \dfrac{{{a_1}}}{{1 - r}}\]
Now it is given that \[{a_1} = 1\]
\[
\Rightarrow {\text{2}} \times {\text{1}} = \dfrac{1}{{1 - r}} \\
\Rightarrow 1 - r = \dfrac{1}{2} \Rightarrow r = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\
\]
So the required is
\[
{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \\
= 1,{\text{ }}\dfrac{1}{2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^3}{\text{, }}{\left( {\dfrac{1}{2}} \right)^4}{\text{, }}.......................... \\
\]
So, this is the required answer.
Note: - In these types of questions the key concept is that always remember the sum of infinite terms G.P and the general series of infinite G.P, then according to given conditions calculate the value of common ratio, after getting this we can easily calculate the required infinite terms G.P series.
It is given that the first term of an infinite G.P is 1.
\[ \Rightarrow {a_1} = 1\]
Now, we know the sum of infinite G.P \[\left( {{S_\infty }} \right) = \dfrac{{{a_1}}}{{1 - r}}\], (where r is the common ratio)
Let the infinite G.P series is
\[{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \]
Therefore the sum of this series is
\[{S_\infty } = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty = \dfrac{{{a_1}}}{{1 - r}}................\left( 1 \right)\]
Now according to question it is given that any term is equal to the sum of succeeding terms
\[ \Rightarrow {a_1} = {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
Now add both sides by \[{a_1}\]
\[ \Rightarrow {a_1} + {a_1} = {a_1} + {a_1}r + {a_1}{r^2} + {a_1}{r^3} + ........................\infty \]
From equation (1)
\[ \Rightarrow {\text{2}}{a_1} = \dfrac{{{a_1}}}{{1 - r}}\]
Now it is given that \[{a_1} = 1\]
\[
\Rightarrow {\text{2}} \times {\text{1}} = \dfrac{1}{{1 - r}} \\
\Rightarrow 1 - r = \dfrac{1}{2} \Rightarrow r = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\
\]
So the required is
\[
{a_1},{\text{ }}{a_1}r,{\text{ }}{a_1}{r^2}{\text{, }}{a_1}{r^3}{\text{, }}........................\infty \\
= 1,{\text{ }}\dfrac{1}{2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^2}{\text{, }}{\left( {\dfrac{1}{2}} \right)^3}{\text{, }}{\left( {\dfrac{1}{2}} \right)^4}{\text{, }}.......................... \\
\]
So, this is the required answer.
Note: - In these types of questions the key concept is that always remember the sum of infinite terms G.P and the general series of infinite G.P, then according to given conditions calculate the value of common ratio, after getting this we can easily calculate the required infinite terms G.P series.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
According to Bernoullis equation the expression which class 11 physics CBSE

A solution of a substance X is used for white washing class 11 chemistry CBSE

10 examples of friction in our daily life

Simon Commission came to India in A 1927 B 1928 C 1929 class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Can anyone list 10 advantages and disadvantages of friction
