Answer
Verified
499.2k+ views
Hint: Any term in G.P. is equal to the sum of all the succeeding terms. We have:
$ \Rightarrow {T_n} = {T_{n + 1}} + {T_{n + 2}} + {T_{n + 3}} + ......\infty $
The general term of G.P. can be written as:
$ \Rightarrow {T_n} = a{r^{n - 1}} .....(i)$
And according to the information given in the question, any term of the G.P. is equal to the sum of all the succeeding terms. From this we’ll get:
$ \Rightarrow {T_n} = {T_{n + 1}} + {T_{n + 2}} + {T_{n + 3}} + ......\infty $
Substituting corresponding values in equation$(i)$, we’ll get:
$ \Rightarrow a{r^{n - 1}} = a{r^n} + a{r^{n + 1}} + a{r^{n + 2}} + ......\infty ,$
$a$ is the first term of G.P. and its value is $1$ as per the information given in the question. So putting its value, we’ll get:
$
\Rightarrow {r^{n - 1}} = {r^n} + {r^{n + 1}} + {r^{n + 2}} + .....\infty , \\
\Rightarrow {r^{n - 1}} = {r^n}\left[ {1 + r + {r^2} + .....\infty } \right], \\
\Rightarrow \dfrac{1}{r} = \left[ {1 + r + {r^2} + .....\infty } \right] .....(ii) \\
$
Now, the terms on the right hand side of the above equation constitutes an infinite G.P. with $1$ as the first term and $r$ as the common ratio. And we know the formula for sum of terms of infinite G.P.:
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$
So, on using this formula for equation $(ii)$,we’ll get:
$
\Rightarrow \dfrac{1}{r} = \dfrac{1}{{1 - r}}, \\
\Rightarrow 1 - r = r, \\
\Rightarrow 2r = 1, \\
\Rightarrow r = \dfrac{1}{2}. \\
$
Thus, the common ratio of the G.P. is $\dfrac{1}{2}$ and its first term is already given as $1$. So, we our infinite G.P.:
$ \Rightarrow 1,\dfrac{1}{2},\dfrac{1}{4},\dfrac{1}{8},.......\infty $
For finding sum of its terms, we will again apply${S_\infty } = \dfrac{a}{{1 - r}}$, we’ll get:
$
\Rightarrow {S_\infty } = \dfrac{1}{{1 - \dfrac{1}{2}}}, \\
\Rightarrow {S_\infty } = 2 \\
$
Therefore, the sum of infinite G.P. is $2$.
Note: If a G.P. consists of infinite terms, then we can only calculate the sum of its terms if it's common ratio is greater than $0$ and less than $1$$\left( {0 < r < 1} \right)$.Otherwise its sum will not be defined.
$ \Rightarrow {T_n} = {T_{n + 1}} + {T_{n + 2}} + {T_{n + 3}} + ......\infty $
The general term of G.P. can be written as:
$ \Rightarrow {T_n} = a{r^{n - 1}} .....(i)$
And according to the information given in the question, any term of the G.P. is equal to the sum of all the succeeding terms. From this we’ll get:
$ \Rightarrow {T_n} = {T_{n + 1}} + {T_{n + 2}} + {T_{n + 3}} + ......\infty $
Substituting corresponding values in equation$(i)$, we’ll get:
$ \Rightarrow a{r^{n - 1}} = a{r^n} + a{r^{n + 1}} + a{r^{n + 2}} + ......\infty ,$
$a$ is the first term of G.P. and its value is $1$ as per the information given in the question. So putting its value, we’ll get:
$
\Rightarrow {r^{n - 1}} = {r^n} + {r^{n + 1}} + {r^{n + 2}} + .....\infty , \\
\Rightarrow {r^{n - 1}} = {r^n}\left[ {1 + r + {r^2} + .....\infty } \right], \\
\Rightarrow \dfrac{1}{r} = \left[ {1 + r + {r^2} + .....\infty } \right] .....(ii) \\
$
Now, the terms on the right hand side of the above equation constitutes an infinite G.P. with $1$ as the first term and $r$ as the common ratio. And we know the formula for sum of terms of infinite G.P.:
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$
So, on using this formula for equation $(ii)$,we’ll get:
$
\Rightarrow \dfrac{1}{r} = \dfrac{1}{{1 - r}}, \\
\Rightarrow 1 - r = r, \\
\Rightarrow 2r = 1, \\
\Rightarrow r = \dfrac{1}{2}. \\
$
Thus, the common ratio of the G.P. is $\dfrac{1}{2}$ and its first term is already given as $1$. So, we our infinite G.P.:
$ \Rightarrow 1,\dfrac{1}{2},\dfrac{1}{4},\dfrac{1}{8},.......\infty $
For finding sum of its terms, we will again apply${S_\infty } = \dfrac{a}{{1 - r}}$, we’ll get:
$
\Rightarrow {S_\infty } = \dfrac{1}{{1 - \dfrac{1}{2}}}, \\
\Rightarrow {S_\infty } = 2 \\
$
Therefore, the sum of infinite G.P. is $2$.
Note: If a G.P. consists of infinite terms, then we can only calculate the sum of its terms if it's common ratio is greater than $0$ and less than $1$$\left( {0 < r < 1} \right)$.Otherwise its sum will not be defined.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE