Answer
Verified
464.4k+ views
Hint: Before attempting this question one must have prior knowledge of parabola, the equation which represents the parabola is ${y^2} = 4ax$, using this information will help you to approach towards the solution of the problem
Complete step-by-step solution -
According to the given information we have a parabola ${y^2} = 4x$ whose focal distance is 10
We know that the general equation of parabola is ${y^2} = 4ax$
Taking the given equation of parabola i.e. ${y^2} = 4x$ as equation 1
Comparing the general equation of parabola with the given equation of parabola we get
$4x = 4ax$
$ \Rightarrow $a = 1
So the coordinates of focus of parabola will be (1, 0)
We have focus distance = 10
So focal distance = 10 =$\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 0} \right)}^2}} $
Squaring both sides we get
$ \Rightarrow $\[{\left( {10} \right)^2} = {\left( {\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 0} \right)}^2}} } \right)^2}\]
$ \Rightarrow $\[100 = {\left( {x - 1} \right)^2} + {\left( {y - 0} \right)^2}\]
$ \Rightarrow $\[100 = {x^2} + 1 - 2x + {y^2}\]
Substituting the value of ${y^2}$equation 1
We get \[100 = {x^2} + 1 - 2x + 4x\]
$ \Rightarrow $\[99 = {x^2} + 2x\]
$ \Rightarrow $\[{x^2} + 2x - 99 = 0\]
By the method of splitting the middle term method
We get \[{x^2} + \left( {11 - 9} \right)x - 99 = 0\]
$ \Rightarrow $\[{x^2} + 11x - 9x - 99 = 0\]
$ \Rightarrow $\[x\left( {x + 11} \right) - 9\left( {x + 11} \right) = 0\]
So $x = -11, 9$
Since x can’t be negative
Now substituting the value of x in equation 1
For x = 9
${y^2} = 4\left( 9 \right)$
$ \Rightarrow $${y^2} = 36$
$ \Rightarrow $\[y = \sqrt {36} \]
So $y = 6, -6$
Therefore the coordinates are (9, 6)
Hence option A is the correct option.
Note: In the above solution we came across the terms parabola and focal distance which can be explained as a curve which consists of a set of all points that exist at equal distance from a fixed point (focus) this curve is named as a parabola. The distance from the vertex to focus which is measured along the symmetry of the axis is called focal distance.
Complete step-by-step solution -
According to the given information we have a parabola ${y^2} = 4x$ whose focal distance is 10
We know that the general equation of parabola is ${y^2} = 4ax$
Taking the given equation of parabola i.e. ${y^2} = 4x$ as equation 1
Comparing the general equation of parabola with the given equation of parabola we get
$4x = 4ax$
$ \Rightarrow $a = 1
So the coordinates of focus of parabola will be (1, 0)
We have focus distance = 10
So focal distance = 10 =$\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 0} \right)}^2}} $
Squaring both sides we get
$ \Rightarrow $\[{\left( {10} \right)^2} = {\left( {\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 0} \right)}^2}} } \right)^2}\]
$ \Rightarrow $\[100 = {\left( {x - 1} \right)^2} + {\left( {y - 0} \right)^2}\]
$ \Rightarrow $\[100 = {x^2} + 1 - 2x + {y^2}\]
Substituting the value of ${y^2}$equation 1
We get \[100 = {x^2} + 1 - 2x + 4x\]
$ \Rightarrow $\[99 = {x^2} + 2x\]
$ \Rightarrow $\[{x^2} + 2x - 99 = 0\]
By the method of splitting the middle term method
We get \[{x^2} + \left( {11 - 9} \right)x - 99 = 0\]
$ \Rightarrow $\[{x^2} + 11x - 9x - 99 = 0\]
$ \Rightarrow $\[x\left( {x + 11} \right) - 9\left( {x + 11} \right) = 0\]
So $x = -11, 9$
Since x can’t be negative
Now substituting the value of x in equation 1
For x = 9
${y^2} = 4\left( 9 \right)$
$ \Rightarrow $${y^2} = 36$
$ \Rightarrow $\[y = \sqrt {36} \]
So $y = 6, -6$
Therefore the coordinates are (9, 6)
Hence option A is the correct option.
Note: In the above solution we came across the terms parabola and focal distance which can be explained as a curve which consists of a set of all points that exist at equal distance from a fixed point (focus) this curve is named as a parabola. The distance from the vertex to focus which is measured along the symmetry of the axis is called focal distance.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE