Answer
Verified
473.7k+ views
Hint: Before attempting this question one must have prior knowledge of parabola, the equation which represents the parabola is ${y^2} = 4ax$, using this information will help you to approach towards the solution of the problem
Complete step-by-step solution -
According to the given information we have a parabola ${y^2} = 4x$ whose focal distance is 10
We know that the general equation of parabola is ${y^2} = 4ax$
Taking the given equation of parabola i.e. ${y^2} = 4x$ as equation 1
Comparing the general equation of parabola with the given equation of parabola we get
$4x = 4ax$
$ \Rightarrow $a = 1
So the coordinates of focus of parabola will be (1, 0)
We have focus distance = 10
So focal distance = 10 =$\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 0} \right)}^2}} $
Squaring both sides we get
$ \Rightarrow $\[{\left( {10} \right)^2} = {\left( {\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 0} \right)}^2}} } \right)^2}\]
$ \Rightarrow $\[100 = {\left( {x - 1} \right)^2} + {\left( {y - 0} \right)^2}\]
$ \Rightarrow $\[100 = {x^2} + 1 - 2x + {y^2}\]
Substituting the value of ${y^2}$equation 1
We get \[100 = {x^2} + 1 - 2x + 4x\]
$ \Rightarrow $\[99 = {x^2} + 2x\]
$ \Rightarrow $\[{x^2} + 2x - 99 = 0\]
By the method of splitting the middle term method
We get \[{x^2} + \left( {11 - 9} \right)x - 99 = 0\]
$ \Rightarrow $\[{x^2} + 11x - 9x - 99 = 0\]
$ \Rightarrow $\[x\left( {x + 11} \right) - 9\left( {x + 11} \right) = 0\]
So $x = -11, 9$
Since x can’t be negative
Now substituting the value of x in equation 1
For x = 9
${y^2} = 4\left( 9 \right)$
$ \Rightarrow $${y^2} = 36$
$ \Rightarrow $\[y = \sqrt {36} \]
So $y = 6, -6$
Therefore the coordinates are (9, 6)
Hence option A is the correct option.
Note: In the above solution we came across the terms parabola and focal distance which can be explained as a curve which consists of a set of all points that exist at equal distance from a fixed point (focus) this curve is named as a parabola. The distance from the vertex to focus which is measured along the symmetry of the axis is called focal distance.
Complete step-by-step solution -
According to the given information we have a parabola ${y^2} = 4x$ whose focal distance is 10
We know that the general equation of parabola is ${y^2} = 4ax$
Taking the given equation of parabola i.e. ${y^2} = 4x$ as equation 1
Comparing the general equation of parabola with the given equation of parabola we get
$4x = 4ax$
$ \Rightarrow $a = 1
So the coordinates of focus of parabola will be (1, 0)
We have focus distance = 10
So focal distance = 10 =$\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 0} \right)}^2}} $
Squaring both sides we get
$ \Rightarrow $\[{\left( {10} \right)^2} = {\left( {\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 0} \right)}^2}} } \right)^2}\]
$ \Rightarrow $\[100 = {\left( {x - 1} \right)^2} + {\left( {y - 0} \right)^2}\]
$ \Rightarrow $\[100 = {x^2} + 1 - 2x + {y^2}\]
Substituting the value of ${y^2}$equation 1
We get \[100 = {x^2} + 1 - 2x + 4x\]
$ \Rightarrow $\[99 = {x^2} + 2x\]
$ \Rightarrow $\[{x^2} + 2x - 99 = 0\]
By the method of splitting the middle term method
We get \[{x^2} + \left( {11 - 9} \right)x - 99 = 0\]
$ \Rightarrow $\[{x^2} + 11x - 9x - 99 = 0\]
$ \Rightarrow $\[x\left( {x + 11} \right) - 9\left( {x + 11} \right) = 0\]
So $x = -11, 9$
Since x can’t be negative
Now substituting the value of x in equation 1
For x = 9
${y^2} = 4\left( 9 \right)$
$ \Rightarrow $${y^2} = 36$
$ \Rightarrow $\[y = \sqrt {36} \]
So $y = 6, -6$
Therefore the coordinates are (9, 6)
Hence option A is the correct option.
Note: In the above solution we came across the terms parabola and focal distance which can be explained as a curve which consists of a set of all points that exist at equal distance from a fixed point (focus) this curve is named as a parabola. The distance from the vertex to focus which is measured along the symmetry of the axis is called focal distance.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE