Answer
Verified
460.8k+ views
Hint: To solve the question, we have to remember that, in terms of eccentricity, the focus is at the distance of ae from the centre or we can say that the foci will be (ae, 0). And if foci of ellipse and hyperbola coincide, then foci of hyperbola = foci of ellipse.
We know that, the eccentricity of an ellipse and hyperbola is the ratio from the centre to one of the foci and to one of the vertices and is given by $e = \dfrac{{\sqrt {{a^2} - {b^2}} }}{a}$ for ellipse and $e = \dfrac{{\sqrt {{a^2} + {b^2}} }}{a}$ for hyperbola.
Complete step-by-step answer:
Given that,
Equation of ellipse = $\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
Equation of hyperbola = $\dfrac{{{x^2}}}{{144}} - \dfrac{{{y^2}}}{{81}} = \dfrac{1}{{25}}$
It can also be written as:
$\dfrac{{25{x^2}}}{{144}} - \dfrac{{25{y^2}}}{{81}} = 1$, or
$\dfrac{{{x^2}}}{{\dfrac{{144}}{{25}}}} - \dfrac{{{y^2}}}{{\dfrac{{81}}{{25}}}} = 1$
Now, we know that the eccentricity of ellipse is given by, $e = \dfrac{{\sqrt {{a^2} - {b^2}} }}{a}$
So,
Comparing the equation of ellipse with general equation of ellipse i.e. $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
We get a = 4
The eccentricity of ellipse will be,
$ \Rightarrow e = \dfrac{{\sqrt {16 - {b^2}} }}{4}$
$ \Rightarrow e = \sqrt {1 - \dfrac{{{b^2}}}{{16}}} $ ………. (i)
Now, comparing the equation of hyperbola with general equation of hyperbola i.e. $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$
We get, $a' = \dfrac{{12}}{5}$ and $b' = \dfrac{9}{5}$
Then, the eccentricity of hyperbola will be,
$ \Rightarrow e' = \dfrac{{\sqrt {\dfrac{{144}}{{25}} + \dfrac{{81}}{{25}}} }}{{\dfrac{{12}}{5}}}$
$ \Rightarrow e' = \dfrac{3}{{\dfrac{{12}}{5}}}$ ……… (ii)
Now, we know that the hyperbola and ellipse coincide, then their foci will be equal.
i.e. foci of ellipse = foci of hyperbola.
$ \Rightarrow ae = a'e'$
Putting the values from equation (i) and (ii),
$ \Rightarrow 4\sqrt {1 - \dfrac{{{b^2}}}{{16}}} = \dfrac{{12}}{5} \times 3 \times \dfrac{5}{{12}}$
$ \Rightarrow \sqrt {1 - \dfrac{{{b^2}}}{{16}}} = \dfrac{3}{4}$
Squaring both sides, we will get
$ \Rightarrow \left( {1 - \dfrac{{{b^2}}}{{16}}} \right) = \dfrac{9}{{16}}$
Taking L.C.M, we get
\[ \Rightarrow 16 - {b^2} = \dfrac{9}{{16}} \times 16\]
\[ \Rightarrow 16 - {b^2} = 9\]
\[ \Rightarrow {b^2} = 16 - 9\]
\[ \Rightarrow {b^2} = 7\]
So, the correct answer is “Option C”.
Note: The foci of an ellipse always lie on the major axis. The major axis is determined by finding the intercepts on the axes of symmetry. Whereas, the foci of a hyperbola always lie on the transverse axis. It is the positive term whose denominator gives the transverse axis.
We know that, the eccentricity of an ellipse and hyperbola is the ratio from the centre to one of the foci and to one of the vertices and is given by $e = \dfrac{{\sqrt {{a^2} - {b^2}} }}{a}$ for ellipse and $e = \dfrac{{\sqrt {{a^2} + {b^2}} }}{a}$ for hyperbola.
Complete step-by-step answer:
Given that,
Equation of ellipse = $\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
Equation of hyperbola = $\dfrac{{{x^2}}}{{144}} - \dfrac{{{y^2}}}{{81}} = \dfrac{1}{{25}}$
It can also be written as:
$\dfrac{{25{x^2}}}{{144}} - \dfrac{{25{y^2}}}{{81}} = 1$, or
$\dfrac{{{x^2}}}{{\dfrac{{144}}{{25}}}} - \dfrac{{{y^2}}}{{\dfrac{{81}}{{25}}}} = 1$
Now, we know that the eccentricity of ellipse is given by, $e = \dfrac{{\sqrt {{a^2} - {b^2}} }}{a}$
So,
Comparing the equation of ellipse with general equation of ellipse i.e. $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
We get a = 4
The eccentricity of ellipse will be,
$ \Rightarrow e = \dfrac{{\sqrt {16 - {b^2}} }}{4}$
$ \Rightarrow e = \sqrt {1 - \dfrac{{{b^2}}}{{16}}} $ ………. (i)
Now, comparing the equation of hyperbola with general equation of hyperbola i.e. $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$
We get, $a' = \dfrac{{12}}{5}$ and $b' = \dfrac{9}{5}$
Then, the eccentricity of hyperbola will be,
$ \Rightarrow e' = \dfrac{{\sqrt {\dfrac{{144}}{{25}} + \dfrac{{81}}{{25}}} }}{{\dfrac{{12}}{5}}}$
$ \Rightarrow e' = \dfrac{3}{{\dfrac{{12}}{5}}}$ ……… (ii)
Now, we know that the hyperbola and ellipse coincide, then their foci will be equal.
i.e. foci of ellipse = foci of hyperbola.
$ \Rightarrow ae = a'e'$
Putting the values from equation (i) and (ii),
$ \Rightarrow 4\sqrt {1 - \dfrac{{{b^2}}}{{16}}} = \dfrac{{12}}{5} \times 3 \times \dfrac{5}{{12}}$
$ \Rightarrow \sqrt {1 - \dfrac{{{b^2}}}{{16}}} = \dfrac{3}{4}$
Squaring both sides, we will get
$ \Rightarrow \left( {1 - \dfrac{{{b^2}}}{{16}}} \right) = \dfrac{9}{{16}}$
Taking L.C.M, we get
\[ \Rightarrow 16 - {b^2} = \dfrac{9}{{16}} \times 16\]
\[ \Rightarrow 16 - {b^2} = 9\]
\[ \Rightarrow {b^2} = 16 - 9\]
\[ \Rightarrow {b^2} = 7\]
So, the correct answer is “Option C”.
Note: The foci of an ellipse always lie on the major axis. The major axis is determined by finding the intercepts on the axes of symmetry. Whereas, the foci of a hyperbola always lie on the transverse axis. It is the positive term whose denominator gives the transverse axis.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE