Answer
Verified
430.5k+ views
Hint: First, take the mid values of each class as ${x_i}$ and frequency ${f_i}$. The mean value is equivalent to the fraction between the addition of a product of mid-value with frequency and the total frequency and the formula to calculate mode is $l + \dfrac{{{f_1} - {f_0}}}{{2{f_1} - {f_0} - {f_2}}} \times h$.
Complete Step by Step Solution:
We are given the monthly expenditure of families.
Let us assume that ${f_i}$ represents the number of consumers and ${x_i}$ is the difference in the intervals divided by 2.
Let the missing frequency be $x$.
The frequency distribution table for the given data is as follows:
We know that the general formula to find the mean value is,
Mean $ = \dfrac{{\sum {{x_i}{f_i}} }}{{\sum {{x_i}} }}$
Now, we will substitute the value for the sum of the product of frequency and midpoint and the value for the sum of total frequency.
$ \Rightarrow $ Mean $ = \dfrac{{532500}}{{200}}$
Divide numerator by the denominator,
$\therefore $ Mean $ = 2662.5$
Hence the mean expenditure is Rs. 2662.5.
The formula of mode is,
Mode $ = l + \dfrac{{{f_1} - {f_0}}}{{2{f_1} - {f_0} - {f_2}}} \times h$
The modal class is the interval with the highest frequency.
$ \Rightarrow $Modal class $ = 1500 - 2000$
The lower limit of the modal class is,
$ \Rightarrow l = 1500$
The class-interval is,
$ \Rightarrow h = 1500 - 1000 = 500$
The frequency of the modal class is,
$ \Rightarrow {f_1} = 40$
The frequency of the class before the modal class is,
$ \Rightarrow {f_0} = 24$
The frequency of the class after modal class is,
$ \Rightarrow {f_2} = 33$
Substitute these values in the mode formula,
$ \Rightarrow $ Mode $ = 1500 + \dfrac{{40 - 24}}{{2\left( {40} \right) - 24 - 33}} \times 500$
Simplify the terms,
$ \Rightarrow $ Mode $ = 1500 + \dfrac{{16}}{{80 - 57}} \times 500$
Subtract the values in the denominator and multiply the terms in the numerator,
$ \Rightarrow $ Mode $ = 1500 + \dfrac{{8000}}{{23}}$
Divide the numerator by denominator,
$ \Rightarrow $ Mode $ = 1500 + 347.83$
Add the terms,
$\therefore $ Mode $ = 1847.83$
Hence, the mode is Rs. 1847.83.
Note: In solving these types of questions, students should know the formulae of mean and mode. The question is really simple, students should note down the values from the problem carefully, else the answer can be wrong. The other possibility of a mistake in this problem is while calculating as it has a lot of mathematical calculations.
Complete Step by Step Solution:
We are given the monthly expenditure of families.
Let us assume that ${f_i}$ represents the number of consumers and ${x_i}$ is the difference in the intervals divided by 2.
Let the missing frequency be $x$.
The frequency distribution table for the given data is as follows:
Class | Frequency (${f_i}$) | Mid-value (${x_i}$) | ${f_i}{x_i}$ |
1000-1500 | 24 | 1250 | 30000 |
1500-2000 | 40 | 1750 | 70000 |
2000-2500 | 33 | 2250 | 74250 |
2500-3000 | 28 | 2750 | 77000 |
3000-3500 | 30 | 3250 | 97500 |
3500-4000 | 22 | 3750 | 82500 |
4000-4500 | 16 | 4250 | 68000 |
4500-5000 | 7 | 4750 | 33250 |
Total | $\sum {{f_i}} = 200$ | $\sum {{f_i}{x_i}} = 532500$ |
We know that the general formula to find the mean value is,
Mean $ = \dfrac{{\sum {{x_i}{f_i}} }}{{\sum {{x_i}} }}$
Now, we will substitute the value for the sum of the product of frequency and midpoint and the value for the sum of total frequency.
$ \Rightarrow $ Mean $ = \dfrac{{532500}}{{200}}$
Divide numerator by the denominator,
$\therefore $ Mean $ = 2662.5$
Hence the mean expenditure is Rs. 2662.5.
The formula of mode is,
Mode $ = l + \dfrac{{{f_1} - {f_0}}}{{2{f_1} - {f_0} - {f_2}}} \times h$
The modal class is the interval with the highest frequency.
$ \Rightarrow $Modal class $ = 1500 - 2000$
The lower limit of the modal class is,
$ \Rightarrow l = 1500$
The class-interval is,
$ \Rightarrow h = 1500 - 1000 = 500$
The frequency of the modal class is,
$ \Rightarrow {f_1} = 40$
The frequency of the class before the modal class is,
$ \Rightarrow {f_0} = 24$
The frequency of the class after modal class is,
$ \Rightarrow {f_2} = 33$
Substitute these values in the mode formula,
$ \Rightarrow $ Mode $ = 1500 + \dfrac{{40 - 24}}{{2\left( {40} \right) - 24 - 33}} \times 500$
Simplify the terms,
$ \Rightarrow $ Mode $ = 1500 + \dfrac{{16}}{{80 - 57}} \times 500$
Subtract the values in the denominator and multiply the terms in the numerator,
$ \Rightarrow $ Mode $ = 1500 + \dfrac{{8000}}{{23}}$
Divide the numerator by denominator,
$ \Rightarrow $ Mode $ = 1500 + 347.83$
Add the terms,
$\therefore $ Mode $ = 1847.83$
Hence, the mode is Rs. 1847.83.
Note: In solving these types of questions, students should know the formulae of mean and mode. The question is really simple, students should note down the values from the problem carefully, else the answer can be wrong. The other possibility of a mistake in this problem is while calculating as it has a lot of mathematical calculations.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE