Answer
Verified
466.5k+ views
Hint: First draw the diagram according to the information mentioned in the question. Now, find the points A and B, find the slope by using the slope-intercept form. Use the condition of lines perpendicular to each other and find the slope of the line segment OP. Find the equation of line segment OP and use it to find point P. Finally use the section formula by internal division to find the ratio.
Complete step-by-step solution:
Let us first draw the x-axis and y-axis and plot the line and the other information according to the question.
Here, we can see from the above diagram that the line cuts the x-axis at point A and cuts the y-axis at point B. Now, let us find the co-ordinates of point A and point B. For point A, we know that the y will be equal to zero. Hence, substituting, $y=0$ in the line equation $3x+y=\lambda $, we get,
$\begin{align}
& 3x+0=\lambda \\
& \Rightarrow 3x=\lambda \\
& \Rightarrow x=\dfrac{\lambda }{3} \\
\end{align}$
Similarly, to find point B, we know that $x=0$, so we get,
$\begin{align}
& 3\left( 0 \right)+y=\lambda \\
& \Rightarrow 0+y=\lambda \\
& \Rightarrow y=\lambda \\
\end{align}$
Hence, point $A=\left( \dfrac{\lambda }{3},0 \right)$ and point $B=\left( 0,\lambda \right)$. We know that the general slope-intercept form is, $y=mx+c$, where $m$ is the slope of the line, $c$ is the y-intercept. Let us convert the given line $3x+y=\lambda $ into $y=mx+c$ form. So, we get,
$y=-3x+\lambda $
Therefore, ${{m}_{AB}}=-3$. Since, the line AB and segment OP are perpendicular to each other, we can say that,
${{m}_{OP}}\times {{m}_{AB}}=-1$
We have, ${{m}_{AB}}=-3$, so let us find the value of ${{m}_{OP}}$.
$\begin{align}
& {{m}_{OP}}\times \left( -3 \right)=-1 \\
& \Rightarrow {{m}_{OP}}=\dfrac{1}{3} \\
\end{align}$
Now, we know the point-slope form $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$. Let us use this expression and find the equation of segment OP. We have segment OP passing through the origin, which is $O\left( 0,0 \right)=\left( {{x}_{1}},{{y}_{1}} \right)$ and ${{m}_{OP}}=\dfrac{1}{3}$. So,
$\begin{align}
& y-0=\dfrac{1}{3}\left( x-0 \right) \\
& \Rightarrow y=\dfrac{1}{3}x \\
& \Rightarrow 3y=x \\
& \Rightarrow x-3y=0 \\
\end{align}$
We have the equations of line AB and line segment OP as $3x+y=\lambda $ and $x-3y=0$ respectively. Now, let us substitute $x=3y$ in the line AB equation, so we get,
$\begin{align}
& 3\left( 3y \right)+y=\lambda \\
& \Rightarrow 9y+y=\lambda \\
& \Rightarrow 10y=\lambda \\
& \Rightarrow y=\dfrac{\lambda }{10} \\
\end{align}$
Substituting $y=\dfrac{\lambda }{10}$ in the line equation $x-3y=0$, we get,
$\begin{align}
& x-3\left( \dfrac{\lambda }{10} \right)=0 \\
& \Rightarrow x-\dfrac{3\lambda }{10}=0 \\
& \Rightarrow x=\dfrac{3\lambda }{10} \\
\end{align}$
Therefore, the point P will be $\left( \dfrac{3\lambda }{10},\dfrac{\lambda }{10} \right)$. Now, let us suppose that P divides AB into $m:n$, so we get, $\dfrac{PA}{BP}=\dfrac{m}{n}$ . Therefore, by section formula of internal division, we have,
$x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}$
We have $P\left( x,y \right)=\left( \dfrac{3\lambda }{10},\dfrac{\lambda }{10} \right),A\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{\lambda }{3},0 \right),B\left( {{x}_{2}},{{y}_{2}} \right)=\left( 0,\lambda \right)$. Let us substitute these values in the expression of section formula. Let us substitute the value in $x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}$, so we get,
$\begin{align}
& \dfrac{3\lambda }{10}=\dfrac{m\times \left( 0 \right)+n\times \dfrac{\lambda }{3}}{m+n} \\
& \Rightarrow \dfrac{3\lambda }{10}=\dfrac{\dfrac{n\lambda }{3}}{m+n} \\
& \Rightarrow 3\lambda \left( m+n \right)=10\times \dfrac{n\lambda }{3} \\
& \Rightarrow 3m+3n=\dfrac{10n}{3} \\
& \Rightarrow 3m=\dfrac{10n}{3}-3n \\
& \Rightarrow 3m=\dfrac{10n-9n}{3} \\
& \Rightarrow 3m=\dfrac{n}{3} \\
& \Rightarrow \dfrac{m}{n}=\dfrac{1}{9} \\
\end{align}$
We have, $\dfrac{PA}{BP}=\dfrac{m}{n}=\dfrac{1}{9}$ , but we need, $\dfrac{BP}{PA}=\dfrac{n}{m}=\dfrac{9}{1}$ .
Therefore, BP: PA is 9: 1.
Hence, the correct answer is option A.
Note: In this question, the construction of the diagram according to the conditions mentioned makes it an important step, the next important step is to find the coordinates of the points A, B, and the point P which will be used for finding the ratio. You can also use the formula of y-coordinate of the point P and its corresponding section formula, $y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}$ to find the required ratio.
Complete step-by-step solution:
Let us first draw the x-axis and y-axis and plot the line and the other information according to the question.
Here, we can see from the above diagram that the line cuts the x-axis at point A and cuts the y-axis at point B. Now, let us find the co-ordinates of point A and point B. For point A, we know that the y will be equal to zero. Hence, substituting, $y=0$ in the line equation $3x+y=\lambda $, we get,
$\begin{align}
& 3x+0=\lambda \\
& \Rightarrow 3x=\lambda \\
& \Rightarrow x=\dfrac{\lambda }{3} \\
\end{align}$
Similarly, to find point B, we know that $x=0$, so we get,
$\begin{align}
& 3\left( 0 \right)+y=\lambda \\
& \Rightarrow 0+y=\lambda \\
& \Rightarrow y=\lambda \\
\end{align}$
Hence, point $A=\left( \dfrac{\lambda }{3},0 \right)$ and point $B=\left( 0,\lambda \right)$. We know that the general slope-intercept form is, $y=mx+c$, where $m$ is the slope of the line, $c$ is the y-intercept. Let us convert the given line $3x+y=\lambda $ into $y=mx+c$ form. So, we get,
$y=-3x+\lambda $
Therefore, ${{m}_{AB}}=-3$. Since, the line AB and segment OP are perpendicular to each other, we can say that,
${{m}_{OP}}\times {{m}_{AB}}=-1$
We have, ${{m}_{AB}}=-3$, so let us find the value of ${{m}_{OP}}$.
$\begin{align}
& {{m}_{OP}}\times \left( -3 \right)=-1 \\
& \Rightarrow {{m}_{OP}}=\dfrac{1}{3} \\
\end{align}$
Now, we know the point-slope form $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$. Let us use this expression and find the equation of segment OP. We have segment OP passing through the origin, which is $O\left( 0,0 \right)=\left( {{x}_{1}},{{y}_{1}} \right)$ and ${{m}_{OP}}=\dfrac{1}{3}$. So,
$\begin{align}
& y-0=\dfrac{1}{3}\left( x-0 \right) \\
& \Rightarrow y=\dfrac{1}{3}x \\
& \Rightarrow 3y=x \\
& \Rightarrow x-3y=0 \\
\end{align}$
We have the equations of line AB and line segment OP as $3x+y=\lambda $ and $x-3y=0$ respectively. Now, let us substitute $x=3y$ in the line AB equation, so we get,
$\begin{align}
& 3\left( 3y \right)+y=\lambda \\
& \Rightarrow 9y+y=\lambda \\
& \Rightarrow 10y=\lambda \\
& \Rightarrow y=\dfrac{\lambda }{10} \\
\end{align}$
Substituting $y=\dfrac{\lambda }{10}$ in the line equation $x-3y=0$, we get,
$\begin{align}
& x-3\left( \dfrac{\lambda }{10} \right)=0 \\
& \Rightarrow x-\dfrac{3\lambda }{10}=0 \\
& \Rightarrow x=\dfrac{3\lambda }{10} \\
\end{align}$
Therefore, the point P will be $\left( \dfrac{3\lambda }{10},\dfrac{\lambda }{10} \right)$. Now, let us suppose that P divides AB into $m:n$, so we get, $\dfrac{PA}{BP}=\dfrac{m}{n}$ . Therefore, by section formula of internal division, we have,
$x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}$
We have $P\left( x,y \right)=\left( \dfrac{3\lambda }{10},\dfrac{\lambda }{10} \right),A\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{\lambda }{3},0 \right),B\left( {{x}_{2}},{{y}_{2}} \right)=\left( 0,\lambda \right)$. Let us substitute these values in the expression of section formula. Let us substitute the value in $x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}$, so we get,
$\begin{align}
& \dfrac{3\lambda }{10}=\dfrac{m\times \left( 0 \right)+n\times \dfrac{\lambda }{3}}{m+n} \\
& \Rightarrow \dfrac{3\lambda }{10}=\dfrac{\dfrac{n\lambda }{3}}{m+n} \\
& \Rightarrow 3\lambda \left( m+n \right)=10\times \dfrac{n\lambda }{3} \\
& \Rightarrow 3m+3n=\dfrac{10n}{3} \\
& \Rightarrow 3m=\dfrac{10n}{3}-3n \\
& \Rightarrow 3m=\dfrac{10n-9n}{3} \\
& \Rightarrow 3m=\dfrac{n}{3} \\
& \Rightarrow \dfrac{m}{n}=\dfrac{1}{9} \\
\end{align}$
We have, $\dfrac{PA}{BP}=\dfrac{m}{n}=\dfrac{1}{9}$ , but we need, $\dfrac{BP}{PA}=\dfrac{n}{m}=\dfrac{9}{1}$ .
Therefore, BP: PA is 9: 1.
Hence, the correct answer is option A.
Note: In this question, the construction of the diagram according to the conditions mentioned makes it an important step, the next important step is to find the coordinates of the points A, B, and the point P which will be used for finding the ratio. You can also use the formula of y-coordinate of the point P and its corresponding section formula, $y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}$ to find the required ratio.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE