
The force of interaction between two atoms is given by $F = \alpha \beta \exp \left( {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right)$; where x is the distance, k is the Boltzmann constant and T is temperature and α and β are two constants. The dimension of β is
A. ${M^2}{L^2}{T^{ - 2}}$
B. ${M^2}L{T^{ - 4}}$
C. ${M^0}{L^2}{T^{ - 4}}$
D. $ML{T^{ - 2}}$
Answer
474.6k+ views
Hint: In this question, we need to determine the dimension of β such that the force of interaction between two atoms is given by $F = \alpha \beta \exp \left( {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right)$. For this, we will apply the dimensional formula in each of the parameters and evaluate the dimension of β.
Complete step by step answer:
‘x’ is the distance and so, the dimensional unit of x is L.
‘k’ is the Boltzmann constant whose dimension is given as $M{L^2}{T^{ - 3}}$.
‘t’ is the temperature and so, the dimensional unit of ‘t’ is T.
α and β are two constants.
The raised power of the exponential function should always be a constant value with dimensionless terms. So, here the terms that are raised to the power of the exponential function is $\left( {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right)$ which should be dimensionless.
Dimensionless quantity refers to ${M^0}{L^0}{T^0}$. So, $\left[ {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right] = {M^0}{L^0}{T^0}$
Substituting the dimensions of all the known parameters in the equation $\left[ {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right] = {M^0}{L^0}{T^0}$ to determine the dimension of α.
\[
\left[ {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right] = {M^0}{L^0}{T^0} \\
\Rightarrow \dfrac{{{L^2}}}{{\alpha \times M{L^2}{T^{ - 3}} \times T}} = {M^0}{L^0}{T^0} \\
\Rightarrow \left[ \alpha \right] = \dfrac{{{L^2}}}{{M{L^2}{T^{ - 3}} \times T}} \\
\Rightarrow \left[ \alpha \right] = {M^{ - 1}}{L^0}{T^2} \\
\]
Hence, the dimensional unit of the constant $\alpha $ is \[{M^{ - 1}}{L^0}{T^2}\].
Now, from the given equation we can write the dimensional equation as:
$
\left[ F \right] = \left[ {\alpha \beta \exp \left( {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right)} \right] \\
= \left[ \alpha \right] \times \left[ \beta \right] \times \left[ {\exp \left( {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right)} \right] \\
$
As, the dimensional unit of an exponential function is always 1 so, the above equation can be written as:
$
\left[ F \right] = \left[ \alpha \right] \times \left[ \beta \right] \times \left[ {\exp \left( {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right)} \right] \\
= \left[ \alpha \right] \times \left[ \beta \right] - - - - (i) \\
$
Force is the product of the mass and the acceleration whose dimensional formula is given as $\left[ F \right] = ML{T^{ - 2}}$. Also, we know the dimensional unit of the constant $\alpha $ is \[{M^{ - 1}}{L^0}{T^2}\]. So, substitute the dimension of $\alpha $ and F in the equation (i) to determine the dimensional unit of $\beta $.
$
\left[ F \right] = \left[ \alpha \right] \times \left[ \beta \right] \\
\implies ML{T^{ - 2}} = {M^{ - 1}}{L^0}{T^2} \times \left[ \beta \right] \\
\implies \left[ \beta \right] = \dfrac{{ML{T^{ - 2}}}}{{{M^{ - 1}}{L^0}{T^2}}} \\
= {M^2}L{T^{ - 4}} \\
$
Hence, the dimension of the constant $\beta $ is given as ${M^2}L{T^{ - 4}}$.
So, the correct answer is “Option B.
Note:
Dimensions are the physical unit of the parameter. There are seven pre-defined dimensions in mathematics, based on which all the other measuring unit’s dimensions are defined such as Mass, ampere, length, temperature, candela, mole and time.
Complete step by step answer:
‘x’ is the distance and so, the dimensional unit of x is L.
‘k’ is the Boltzmann constant whose dimension is given as $M{L^2}{T^{ - 3}}$.
‘t’ is the temperature and so, the dimensional unit of ‘t’ is T.
α and β are two constants.
The raised power of the exponential function should always be a constant value with dimensionless terms. So, here the terms that are raised to the power of the exponential function is $\left( {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right)$ which should be dimensionless.
Dimensionless quantity refers to ${M^0}{L^0}{T^0}$. So, $\left[ {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right] = {M^0}{L^0}{T^0}$
Substituting the dimensions of all the known parameters in the equation $\left[ {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right] = {M^0}{L^0}{T^0}$ to determine the dimension of α.
\[
\left[ {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right] = {M^0}{L^0}{T^0} \\
\Rightarrow \dfrac{{{L^2}}}{{\alpha \times M{L^2}{T^{ - 3}} \times T}} = {M^0}{L^0}{T^0} \\
\Rightarrow \left[ \alpha \right] = \dfrac{{{L^2}}}{{M{L^2}{T^{ - 3}} \times T}} \\
\Rightarrow \left[ \alpha \right] = {M^{ - 1}}{L^0}{T^2} \\
\]
Hence, the dimensional unit of the constant $\alpha $ is \[{M^{ - 1}}{L^0}{T^2}\].
Now, from the given equation we can write the dimensional equation as:
$
\left[ F \right] = \left[ {\alpha \beta \exp \left( {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right)} \right] \\
= \left[ \alpha \right] \times \left[ \beta \right] \times \left[ {\exp \left( {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right)} \right] \\
$
As, the dimensional unit of an exponential function is always 1 so, the above equation can be written as:
$
\left[ F \right] = \left[ \alpha \right] \times \left[ \beta \right] \times \left[ {\exp \left( {\dfrac{{ - {x^2}}}{{\alpha kt}}} \right)} \right] \\
= \left[ \alpha \right] \times \left[ \beta \right] - - - - (i) \\
$
Force is the product of the mass and the acceleration whose dimensional formula is given as $\left[ F \right] = ML{T^{ - 2}}$. Also, we know the dimensional unit of the constant $\alpha $ is \[{M^{ - 1}}{L^0}{T^2}\]. So, substitute the dimension of $\alpha $ and F in the equation (i) to determine the dimensional unit of $\beta $.
$
\left[ F \right] = \left[ \alpha \right] \times \left[ \beta \right] \\
\implies ML{T^{ - 2}} = {M^{ - 1}}{L^0}{T^2} \times \left[ \beta \right] \\
\implies \left[ \beta \right] = \dfrac{{ML{T^{ - 2}}}}{{{M^{ - 1}}{L^0}{T^2}}} \\
= {M^2}L{T^{ - 4}} \\
$
Hence, the dimension of the constant $\beta $ is given as ${M^2}L{T^{ - 4}}$.
So, the correct answer is “Option B.
Note:
Dimensions are the physical unit of the parameter. There are seven pre-defined dimensions in mathematics, based on which all the other measuring unit’s dimensions are defined such as Mass, ampere, length, temperature, candela, mole and time.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
What are the elders in Goa nostalgic about class 11 social science CBSE

Formaldehyde at room temperature is ALiquid BGas CSolid class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Why are forests affected by wars class 11 social science CBSE

Explain zero factorial class 11 maths CBSE
